Suppr超能文献

通过有序逻辑回归验证用于药物筛选的生物标志物。

Validation of biomarkers for drug screening through ordinal logistic regression.

作者信息

Jeong Da Un, Danadibrata Rakha Zharfarizqi, Marcellinus Aroli, Lim Ki Moo

机构信息

Computational Medicine Lab, Kumoh National Institute of Technology, Department of IT Convergence Engineering, Gumi, South Korea.

Computational Medicine Lab, Kumoh National Institute of Technology, Department of Medical IT Convergence Engineering, Gumi, South Korea.

出版信息

Front Physiol. 2022 Oct 6;13:1009647. doi: 10.3389/fphys.2022.1009647. eCollection 2022.

Abstract

Since the Comprehensive Proarrhythmia Assay (CiPA) initiation, many studies have suggested various features based on ionic charges, action potentials (AP), or intracellular calcium (Ca) to assess proarrhythmic risk. These features are computed through electrophysiological simulations using experimental datasets as input, therefore changing with the quality of experimental data; however, research to validate the robustness of features for proarrhythmic risk assessment of drugs depending on datasets has not been conducted. This study aims to verify the availability of features commonly used in assessing the cardiac toxicity of drugs through an ordinal logistic regression model and three datasets measured under different experimental environments and with different purposes. We performed drug simulations using the Tomek-Ohara Rudy (ToR-ORD) ventricular myocyte model and computed 12 features comprising six AP features, four Ca features, and two ion charge features, which reflected the effect and characteristics of each data for CiPA 28 drugs. We then compared the classific performances of ordinal logistic regressions according to these 12 features and used datasets to validate which feature is the best for assessing the proarrhythmic risk of drugs at high, intermediate, and low levels. All 12 features helped determine high-risky torsadogenic drugs, regardless of the datasets used in the simulation as input. In the three types of features, AP features were the most reliable for determining the three Torsade de Pointes (TdP) risk standards. Among AP features, AP duration at 50% repolarization (APD) was the best when individually using features per dataset. In contrast, the AP repolarization velocity (dVm/dt) was the best when merging all features computed through three datasets.

摘要

自综合心律失常分析(CiPA)启动以来,许多研究基于离子电荷、动作电位(AP)或细胞内钙(Ca)提出了各种特征,以评估致心律失常风险。这些特征是通过将实验数据集作为输入进行电生理模拟计算得出的,因此会随实验数据的质量而变化;然而,尚未开展研究来验证这些特征对基于数据集的药物致心律失常风险评估的稳健性。本研究旨在通过有序逻辑回归模型以及在不同实验环境下、出于不同目的测量的三个数据集,验证评估药物心脏毒性时常用特征的可用性。我们使用Tomek-Ohara Rudy(ToR-ORD)心室肌细胞模型进行药物模拟,并计算了12个特征,包括6个AP特征、4个Ca特征和2个离子电荷特征,这些特征反映了CiPA 28种药物的每种数据的效应和特征。然后,我们根据这12个特征比较了有序逻辑回归的分类性能,并使用数据集来验证哪个特征最适合在高、中、低水平评估药物的致心律失常风险。无论模拟中使用哪个数据集作为输入,所有12个特征都有助于确定高风险的尖端扭转型室性心动过速药物。在这三种类型的特征中,AP特征在确定三种尖端扭转型室性心动过速(TdP)风险标准方面最为可靠。在AP特征中,单独使用每个数据集的特征时,50%复极化时的动作电位时程(APD)最佳。相比之下,合并通过三个数据集计算出的所有特征时,动作电位复极化速度(dVm/dt)最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbff/9583152/5322dee5b999/fphys-13-1009647-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验