Centro de Investigación e Innovación en Bioingeniería (Ci(2)B), Universitat Politècnica de València, camino de Vera, s/n, Valencia 46022, Spain.
Centro de Investigación e Innovación en Bioingeniería (Ci(2)B), Universitat Politècnica de València, camino de Vera, s/n, Valencia 46022, Spain.
Comput Methods Programs Biomed. 2022 Jun;221:106934. doi: 10.1016/j.cmpb.2022.106934. Epub 2022 Jun 3.
In silico tools are known to aid in drug cardiotoxicity assessment. However, computational models do not usually consider electrophysiological variability, which may be crucial when predicting rare adverse events such as drug-induced Torsade de Pointes (TdP). In addition, classification tools are usually binary and are not validated using an external data set. Here we analyze the role of incorporating electrophysiological variability in the prediction of drug-induced arrhythmogenic-risk, using a ternary classification and two external validation datasets.
The effects of the 12 training CiPA drugs were simulated at three different concentrations using a single baseline model and an electrophysiologically calibrated population of models. 9 biomarkers related with action potential (AP), calcium dynamics and net charge were measured for each simulated concentration. These biomarkers were used to build ternary classifiers based on Support Vector Machines (SVM) methodology. Classifiers were validated using two external drug sets: the 16 validation CiPA drugs and 81 drugs from CredibleMeds database.
Population of models allowed to obtain different AP responses under the same pharmacological intervention and improve the prediction of drug-induced TdP with respect to the baseline model. The classification tools based on population of models achieve an accuracy higher than 0.8 and a mean classification error (MCE) lower than 0.3 for both validation drug sets and for the two electrophysiological action potential models studied (Tomek et al. 2020 and a modified version of O'Hara et al. 2011). In addition, simulations with population of models allowed the identification of individuals with lower conductances of I, I, and I and higher conductances of I, I, and I, which are more prone to develop TdP.
The methodology presented here provides new opportunities to assess drug-induced TdP-risk, taking into account electrophysiological variability and may be helpful to improve current cardiac safety screening methods.
众所周知,计算工具可辅助药物心脏毒性评估。然而,计算模型通常不考虑电生理变异性,而在预测药物致尖端扭转型室性心动过速(TdP)等罕见不良事件时,电生理变异性可能至关重要。此外,分类工具通常为二分类,并且未使用外部数据集进行验证。在此,我们使用三分类和两个外部验证数据集分析了在预测药物致心律失常风险时纳入电生理变异性的作用。
使用单一线性模型和电生理校准的模型群体,模拟了 12 种训练用临床离子通道药理学(CiPA)药物在三种不同浓度下的作用。针对每种模拟浓度,测量了与动作电位(AP)、钙动力学和净电荷量相关的 9 种生物标志物。这些生物标志物用于基于支持向量机(SVM)方法构建三分类器。使用来自 CredibleMeds 数据库的 16 种验证 CiPA 药物和 81 种药物这两个外部药物数据集对分类器进行验证。
模型群体可在相同的药理学干预下获得不同的 AP 反应,并且相较于基线模型,可提高对药物致 TdP 的预测能力。基于模型群体的分类工具对于两个验证药物数据集以及研究的两种电生理 AP 模型(Tomek 等人,2020 年和 O'Hara 等人,2011 年的修改版本),其准确性均高于 0.8,平均分类误差(MCE)均低于 0.3。此外,使用模型群体进行模拟,可鉴定出 I、I、I 电导率较低和 I、I、I 电导率较高的个体,这些个体更易发生 TdP。
本研究提出的方法提供了新的机会,可在考虑电生理变异性的情况下评估药物致 TdP 风险,这可能有助于改进当前的心脏安全性筛选方法。