Suppr超能文献

可解释人工智能(XAI)用于寻找心脏药物毒性评估的最优计算生物学标志物。

Explainable artificial intelligence (XAI) to find optimal in-silico biomarkers for cardiac drug toxicity evaluation.

机构信息

Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea.

School of Electrical Engineering, Telkom University, Bandung, 40257, Indonesia.

出版信息

Sci Rep. 2024 Oct 14;14(1):24045. doi: 10.1038/s41598-024-71169-w.

Abstract

The Comprehensive In-vitro Proarrhythmia Assay (CiPA) initiative aims to refine the assessment of drug-induced torsades de pointes (TdP) risk, utilizing computational models to predict cardiac drug toxicity. Despite advancements in machine learning applications for this purpose, the specific contribution of in-silico biomarkers to toxicity risk levels has yet to be thoroughly elucidated. This study addresses this gap by implementing explainable artificial intelligence (XAI) to illuminate the impact of individual biomarkers in drug toxicity prediction. We employed the Markov chain Monte Carlo method to generate a detailed dataset for 28 drugs, from which twelve in-silico biomarkers of 12 drugs were computed to train various machine learning models, including Artificial Neural Networks (ANN), Support Vector Machines (SVM), Random Forests (RF), XGBoost, K-Nearest Neighbors (KNN), and Radial Basis Function (RBF) networks. Our study's innovation is leveraging XAI, mainly through the SHAP (SHapley Additive exPlanations) method, to dissect and quantify the contributions of biomarkers across these models. Furthermore, the model performance was evaluated using the test set from 16 drugs. We found that the ANN model coupled with the eleven most influential in-silico biomarkers namely showed the highest classification performance among all classifiers with Area Under the Curve (AUC) scores of 0.92 for predicting high-risk, 0.83 for intermediate-risk, and 0.98 for low-risk drugs. We also found that the optimal in silico biomarkers selected based on SHAP analysis may be different for various classification models. However, we also found that the biomarker selection only sometimes improved the performance; therefore, evaluating various classifiers is still essential to obtain the desired classification performance. Our proposed method could provide a systematic way to assess the best classifier with the optimal in-silico biomarkers for predicting the TdP risk of drugs, thereby advancing the field of cardiac safety evaluations.

摘要

综合体外致心律失常试验(CiPA)计划旨在利用计算模型来预测心脏毒性,从而改进药物致尖端扭转型室性心动过速(TdP)风险评估。尽管机器学习应用在这方面取得了进展,但体内生物标志物对毒性风险水平的具体贡献仍有待充分阐明。本研究通过实施可解释人工智能(XAI)来阐明个体生物标志物在药物毒性预测中的作用,从而解决了这一空白。我们使用马尔可夫链蒙特卡罗方法为 28 种药物生成了详细的数据集,从这些数据集中计算了 12 种药物的 12 种体内生物标志物,以训练各种机器学习模型,包括人工神经网络(ANN)、支持向量机(SVM)、随机森林(RF)、XGBoost、K-最近邻(KNN)和径向基函数(RBF)网络。我们的研究创新之处在于利用 XAI,主要通过 SHAP(SHapley Additive exPlanations)方法,对这些模型中的生物标志物的贡献进行剖析和量化。此外,还使用来自 16 种药物的测试集评估了模型性能。我们发现,ANN 模型与 11 种最具影响力的体内生物标志物(即 )相结合,在所有分类器中表现出最高的分类性能,其预测高风险药物的曲线下面积(AUC)评分为 0.92,预测中风险药物的 AUC 评分为 0.83,预测低风险药物的 AUC 评分为 0.98。我们还发现,基于 SHAP 分析选择的最优体内生物标志物可能因不同的分类模型而异。然而,我们还发现,生物标志物选择有时仅能提高性能;因此,评估各种分类器仍然是获得所需分类性能的关键。我们提出的方法可以为评估预测药物 TdP 风险的最佳分类器和最优体内生物标志物提供一种系统的方法,从而推进心脏安全性评估领域的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a428/11473646/270511a70365/41598_2024_71169_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验