Ingham James, Smith Caroline I, Ellis Barnaby G, Whitley Conor A, Triantafyllou Asterios, Gunning Philip J, Barrett Steve D, Gardener Peter, Shaw Richard J, Risk Janet M, Weightman Peter
Department of Physics, University of Liverpool, L69 7ZE, United Kingdom.
Department of Pathology, Liverpool Clinical Laboratories, University of Liverpool, L69 3GA, United Kingdom.
IOP SciNotes. 2022 Sep 1;3(3):034001. doi: 10.1088/2633-1357/ac95e2. Epub 2022 Oct 7.
A machine learning algorithm (MLA) has been applied to a Fourier transform infrared spectroscopy (FTIR) dataset previously analysed with a principal component analysis (PCA) linear discriminant analysis (LDA) model. This comparison has confirmed the robustness of FTIR as a prognostic tool for oral epithelial dysplasia (OED). The MLA is able to predict malignancy with a sensitivity of 84 ± 3% and a specificity of 79 ± 3%. It provides key wavenumbers that will be important for the development of devices that can be used for improved prognosis of OED.
一种机器学习算法(MLA)已应用于先前用主成分分析(PCA)线性判别分析(LDA)模型分析过的傅里叶变换红外光谱(FTIR)数据集。这种比较证实了FTIR作为口腔上皮发育异常(OED)预后工具的稳健性。MLA能够以84±3%的灵敏度和79±3%的特异性预测恶性肿瘤。它提供了关键波数,这对于开发可用于改善OED预后的设备至关重要。