Suppr超能文献

基于指标的傅里叶变换红外光谱数据分析在口腔癌组织类型鉴别中的应用。

Metric-based analysis of FTIR data to discriminate tissue types in oral cancer.

机构信息

Department of Physics, University of Liverpool, L69 7ZE, UK.

Liverpool Head and Neck Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, L7 8TX, UK.

出版信息

Analyst. 2023 May 2;148(9):1948-1953. doi: 10.1039/d3an00258f.

Abstract

A machine learning algorithm (MLA) has predicted the prognosis of oral potentially malignant lesions and discriminated between lymph node tissue and metastatic oral squamous cell carcinoma (OSCC). The MLA analyses metrics, which are ratios of Fourier transform infrared absorbances, and identifies key wavenumbers that can be associated with molecular biomarkers. The wider efficacy of the MLA is now shown in the more complex primary OSCC tumour setting, where it is able to identify seven types of tissue. Three epithelial and four non-epithelial tissue types were discriminated from each other with sensitivities between 82% and 96% and specificities between 90% and 99%. The wavenumbers involved in the five best discriminating metrics for each tissue type were tightly grouped, indicating that small changes in the spectral profiles of the different tissue types are important. The number of samples used in this study was small, but the information will provide a basis for further, larger investigations.

摘要

一种机器学习算法(MLA)已预测口腔潜在恶性病变的预后,并区分淋巴结组织和转移性口腔鳞状细胞癌(OSCC)。MLA 分析的是傅里叶变换红外吸收率的比值,并确定与分子生物标志物相关的关键波数。现在,该 MLA 在更复杂的原发性 OSCC 肿瘤环境中显示出了更广泛的功效,它能够识别七种类型的组织。三种上皮组织和四种非上皮组织类型彼此之间具有 82%至 96%的敏感性和 90%至 99%的特异性。用于每种组织类型的五个最佳区分指标的波数紧密聚集在一起,表明不同组织类型的光谱特征的微小变化很重要。本研究中使用的样本数量较少,但这些信息将为进一步的更大规模调查提供基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cdb/10152457/ef13b6c23bc4/d3an00258f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验