School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
Angew Chem Int Ed Engl. 2022 Dec 19;61(51):e202214545. doi: 10.1002/anie.202214545. Epub 2022 Nov 17.
Serious safety risks caused by the high reactivity of lithium metal against electrolytes severely hamper the practicability of lithium metal batteries. By introducing unique polymerization site and more fluoride substitution, we built an in situ formed polymer-rich solid electrolyte interphase upon lithium anode to improve battery safety. The fluorine-rich and hydrogen-free polymer exhibits high thermal stability, which effectively reduces the continuous exothermic reaction between electrolyte and anode/cathode. As a result, the critical temperature for thermal safety of 1.0 Ah lithium-LiNi Co Mn O pouch cell can be increased from 143.2 °C to 174.2 °C. The more dangerous "ignition" point of lithium metal batteries, the starting temperature of battery thermal runaway, has been dramatically raised from 240.0 °C to 338.0 °C. This work affords novel strategies upon electrolyte design, aiming to pave the way for high-energy-density and thermally safe lithium metal batteries.
锂金属对电解质的高反应性所导致的严重安全风险严重阻碍了锂金属电池的实用性。通过引入独特的聚合位点和更多的氟取代基,我们在锂金属阳极上构建了原位形成的富聚合物固体电解质中间相,以提高电池安全性。富氟且不含氢的聚合物表现出高的热稳定性,可有效降低电解质与阳极/阴极之间的连续放热反应。因此,1.0 Ah 锂-锂镍钴锰氧化物软包电池的热安全临界温度可从 143.2°C 提高到 174.2°C。更危险的“点火”点,即电池热失控的起始温度,已从 240.0°C大幅提高到 338.0°C。这项工作提供了在电解质设计方面的新策略,旨在为高能量密度和热安全的锂金属电池铺平道路。