New Energy Materials Laboratery, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, PR China.
New Energy Materials Laboratery, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, PR China.
Int J Biol Macromol. 2023 Jan 1;224:604-620. doi: 10.1016/j.ijbiomac.2022.10.150. Epub 2022 Oct 21.
Biopolymer-based conductive hydrogels (HGs) are promising candidates for preparing environmentally friendly flexible electronics. However, it is still a great challenge to synthesize biopolymer-based tough, self-healable, and fast strain recoverable HGs. Herein, a facile strategy is demonstrated to synthesize stretchable, self-recoverable, conductive, and tough HGs strain sensors through the formation of multi-dynamic interactions (i.e., imine bond formation, hydrogen bonds, ionic bonds, and electrostatic bonds) and strong covalent interactions between MXene (TiCT), oxidized sodium alginate (OSA), chitosan (CS), polyacrylamide (PAAm), Fe(III) and PEDOT:PSS. Thus, obtaining dynamically and covalently bonded nanocomposite hydrogels (NCHGs) with controllable interfacial interactions exhibited a high mechanical strength (0.91 MPa), toughness (2.99 MJ/m), stretchability (820 %), elasticity (>600 %) and conductivity (1.31 S/m). In addition, the presence of Fe(III) ions and conducting fillers endows excellent repeatability with high stability in resistance change upon bending or stretching with ultra-broad sensitivity up to 11-gauge factor and consisting lowest resistance change up to 0.5 %.
基于生物聚合物的导电水凝胶(HG)是制备环保型柔性电子产品的有前途的候选材料。然而,合成基于生物聚合物的坚韧、自修复和快速应变恢复性 HG 仍然是一个巨大的挑战。本文展示了一种通过形成多动态相互作用(即亚胺键形成、氢键、离子键和静电键)和 MXene(TiCT)、氧化海藻酸钠(OSA)、壳聚糖(CS)、聚丙烯酰胺(PAAm)、Fe(III)和 PEDOT:PSS 之间的强共价相互作用,来合成具有可控制的界面相互作用的可拉伸、自恢复、导电和坚韧的 HG 应变传感器的简便策略。因此,获得具有可控界面相互作用的动态和共价键合的纳米复合水凝胶(NCHG)具有高机械强度(0.91 MPa)、韧性(2.99 MJ/m)、拉伸性(820%)、弹性(>600%)和导电性(1.31 S/m)。此外,Fe(III)离子和导电填料的存在赋予了极好的重复性和稳定性,在弯曲或拉伸时具有超高的灵敏度,高达 11 的应变系数,以及最低的电阻变化可达 0.5%。