Wang Ying, Chew Alvin Wei Ze, Zhang Limao
School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
Bentley Systems Research Office, 1 Harbourfront Pl, HarbourFront Tower One, Singapore 098633, Singapore.
Appl Soft Comput. 2022 Dec;131:109728. doi: 10.1016/j.asoc.2022.109728. Epub 2022 Oct 20.
Public sentiments towards global pandemics are important for public health assessment and disease control. This study develops a modularized deep learning framework to quantify public sentiments towards COVID-19, followed by leveraging the predicted sentiments to model and forecast the daily growth rate of confirmed COVID-19 cases globally, via a proposed G parameter. In the proposed framework, public sentiments are first modeled via a valence dimensional indicator, instead of discrete schemas, and are classified into 4 primary emotional categories: (a) neutral; (b) negative; (c) positive; (d) ambivalent, by using multiple word embedding models and classifiers for text sentiments analyses and classification. The trained model is subsequently applied to analyze large volumes (millions in quantity) of daily Tweets pertaining to COVID-19, ranging from 22 Jan 2020 to 10 May 2020. The results demonstrate that the global community gradually evokes both positive and negative sentiments towards COVID-19 over time compared to the dominant neural emotion at its inception. The predicted time-series sentiments are then leveraged to train a deep neural network (DNN) to model and forecast the G parameter by achieving the lowest possible mean absolute percentage error (MAPE) score of around 17.0% during the model's testing step with the optimal model configuration.
公众对全球大流行的情绪对于公共卫生评估和疾病控制至关重要。本研究开发了一个模块化深度学习框架,以量化公众对新冠疫情的情绪,随后通过一个提出的G参数,利用预测出的情绪对全球新冠确诊病例的每日增长率进行建模和预测。在所提出的框架中,公众情绪首先通过一个效价维度指标进行建模,而非离散模式,并通过使用多个词嵌入模型和文本情绪分析及分类的分类器,被分为4种主要情绪类别:(a) 中性;(b) 负面;(c) 正面;(d) 矛盾。随后,将训练好的模型应用于分析大量(数量达数百万条)与新冠疫情相关的每日推文,时间范围从2020年1月22日至2020年5月10日。结果表明,与疫情初期占主导的中性情绪相比,全球社会对新冠疫情的正负情绪随时间逐渐显现。然后,利用预测出的时间序列情绪训练一个深度神经网络(DNN),以在模型测试步骤中通过达到约17.0%的最低可能平均绝对百分比误差(MAPE)分数,利用最优模型配置对G参数进行建模和预测。