Chew Alvin Wei Ze, Wang Ying, Zhang Limao
Bentley Systems Research Office, Singapore, 1 Harbourfront Pl, HarbourFront Tower One, Singapore 098633.
School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.
Sustain Cities Soc. 2021 Dec;75:103231. doi: 10.1016/j.scs.2021.103231. Epub 2021 Aug 5.
In this study, we develop a deep learning model to forecast the transmission rate of COVID-19 globally, via a proposed G parameter, as a function of fused data features which encompass selected climate conditions, socioeconomic and restrictive governmental factors. A 2-step optimization process is adopted for the model's data fusion component which systematically performs the following: (Step I) determining the optimal climate feature which can achieve good precision score (> 70%) when predicting the spatial classes distribution of the G parameter on a global scale consisting of 251 countries, followed by (Step II) fusing the optimal climate feature with 11 selected socioeconomic-governmental factors to further improve the model's predictive capability. By far, the obtained results from the model's testing step indicate that land surface temperature day (LSTD) has the strongest correlation with the global G parameter over time by achieving an average precision score of 72%. When coupled with relevant socioeconomic-governmental factors, the model's average precision score improves to 77%. At the local scale analysis for selected countries, our proposed model can provide insights into the relationship between the fused data features and the respective local G parameter by achieving an average accuracy score of 79%.
在本研究中,我们开发了一种深度学习模型,通过一个提议的G参数来预测全球范围内的COVID-19传播率,该参数是融合数据特征的函数,这些特征包括选定的气候条件、社会经济和政府限制因素。模型的数据融合组件采用了两步优化过程,该过程系统地执行以下操作:(第一步)确定在由251个国家组成的全球范围内预测G参数的空间类别分布时能够达到良好精度得分(>70%)的最佳气候特征,随后(第二步)将最佳气候特征与11个选定的社会经济 - 政府因素进行融合,以进一步提高模型的预测能力。到目前为止,模型测试步骤获得的结果表明,地表日温度(LSTD)与全球G参数随时间的相关性最强,平均精度得分为72%。当与相关的社会经济 - 政府因素相结合时,模型的平均精度得分提高到77%。在对选定国家的局部尺度分析中,我们提出的模型通过达到79%的平均准确率,能够深入了解融合数据特征与各自局部G参数之间的关系。