Suppr超能文献

胆管刷片全玻片图像中与恶性肿瘤相关的细胞簇的计算机形态特征的自动分析。

Automated analysis of computerized morphological features of cell clusters associated with malignancy on bile duct brushing whole slide images.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.

Department of Pathology, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.

出版信息

Cancer Med. 2023 Mar;12(5):6365-6378. doi: 10.1002/cam4.5365. Epub 2022 Oct 24.

Abstract

BACKGROUND

Bile duct brush specimens are difficult to interpret as they often present inflammatory and reactive backgrounds due to the local effects of stricture, atypical reactive changes, or previously installed stents, and often have low to intermediate cellularity. As a result, diagnosis of biliary adenocarcinomas is challenging and often results in large interobserver variability and low sensitivity OBJECTIVE: In this work, we used computational image analysis to evaluate the role of nuclear morphological and texture features of epithelial cell clusters to predict the presence of pancreatic and biliary tract adenocarcinoma on digitized brush cytology specimens.

METHODS

Whole slide images from 124 patients, either diagnosed as benign or malignant based on clinicopathological correlation, were collected and randomly split into training (S , N = 58) and testing (S , N = 66) sets, with the exception of cases diagnosed as atypical on cytology were included in S . Nuclear boundaries on cell clusters extracted from each image were segmented via a watershed algorithm. A total of 536 quantitative morphometric features pertaining to nuclear shape, size, and aggregate cluster texture were extracted from within the cell clusters. The most predictive features from patients in S were selected via rank-sum, t-test, and minimum redundancy maximum relevance (mRMR) schemes. The selected features were then used to train three machine-learning classifiers.

RESULTS

Malignant clusters tended to exhibit lower textural homogeneity within the nucleus, greater textural entropy around the nuclear membrane, and longer minor axis lengths. The sensitivity of cytology alone was 74% (without atypicals) and 46% (with atypicals). With machine diagnosis, the sensitivity improved to 68% from 46% when atypicals were included and treated as nonmalignant false negatives. The specificity of our model was 100% within the atypical category.

CONCLUSION

We achieved an area under the receiver operating characteristic curve (AUC) of 0.79 on S , which included atypical cytological diagnosis.

摘要

背景

由于狭窄部位的局部影响、非典型反应性改变或先前安装的支架,胆管刷取标本常呈现出炎症和反应性背景,且通常具有低至中等的细胞密度,因此难以解释。结果,胆管腺癌的诊断具有挑战性,往往导致观察者间差异较大且敏感性较低。目的:本研究采用计算图像分析来评估上皮细胞簇的核形态和纹理特征对预测数字化刷取细胞学标本中胰腺和胆道腺癌的作用。

方法

收集了 124 例患者的全切片图像,根据临床病理相关性诊断为良性或恶性,并随机分为训练集(S ,N=58)和测试集(S ,N=66),除外细胞学诊断为不典型的病例归入 S 。通过分水岭算法对每个图像中提取的细胞簇的核边界进行分割。从细胞簇内提取了总共 536 个与核形状、大小和聚集簇纹理相关的定量形态特征。通过秩和检验、t 检验和最小冗余最大相关性(mRMR)方案从 S 中的患者中选择最具预测性的特征。然后,使用所选特征对三种机器学习分类器进行训练。

结果

恶性细胞簇的核内纹理均匀性较低,核膜周围纹理熵较大,短轴长度较长。细胞学单独诊断的敏感性为 74%(不包括不典型病例)和 46%(包括不典型病例)。当纳入不典型病例并将其视为非恶性假阴性时,使用机器诊断可将敏感性从 46%提高至 68%。我们的模型在不典型病例类别中的特异性为 100%。

结论

在包含不典型细胞学诊断的 S 中,我们获得了 0.79 的受试者工作特征曲线下面积(AUC)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/142c/10028025/675443928e51/CAM4-12-6365-g001.jpg

相似文献

2
Effect of single operator cholangioscopy on accuracy of bile duct cytology.
Diagn Cytopathol. 2020 Dec;48(12):1230-1236. doi: 10.1002/dc.24553. Epub 2020 Aug 8.
4
6
Cytologic predictors of malignancy in bile duct brushings: a multi-reviewer analysis of 60 cases.
Mod Pathol. 2017 Sep;30(9):1273-1286. doi: 10.1038/modpathol.2017.51. Epub 2017 Jun 30.
7
Significance of KRAS mutation testing in biliary brushing cytology specimens: A 10-year retrospective review.
Cancer Cytopathol. 2022 Jul;130(7):558-565. doi: 10.1002/cncy.22579. Epub 2022 Apr 13.
8
Brush cytology of ductal strictures during ERCP.
Acta Gastroenterol Belg. 2000 Jul-Sep;63(3):254-9.

引用本文的文献

1
Artificial intelligence in digital pathology - time for a reality check.
Nat Rev Clin Oncol. 2025 Apr;22(4):283-291. doi: 10.1038/s41571-025-00991-6. Epub 2025 Feb 11.

本文引用的文献

2
Morphological imaging and CT histogram analysis to differentiate pancreatic neuroendocrine tumor grade 3 from neuroendocrine carcinoma.
Diagn Interv Imaging. 2020 Dec;101(12):821-830. doi: 10.1016/j.diii.2020.06.006. Epub 2020 Jul 21.
4
Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology.
Nat Rev Clin Oncol. 2019 Nov;16(11):703-715. doi: 10.1038/s41571-019-0252-y. Epub 2019 Aug 9.
5
Artificial intelligence in cytopathology: a review of the literature and overview of commercial landscape.
J Am Soc Cytopathol. 2019 Jul-Aug;8(4):230-241. doi: 10.1016/j.jasc.2019.03.003. Epub 2019 Mar 25.
6
Opportunities and obstacles for deep learning in biology and medicine.
J R Soc Interface. 2018 Apr;15(141). doi: 10.1098/rsif.2017.0387.
7
Computer-assisted cytologic diagnosis in pancreatic FNA: An application of neural networks to image analysis.
Cancer Cytopathol. 2017 Dec;125(12):926-933. doi: 10.1002/cncy.21915. Epub 2017 Sep 8.
8
Cytologic predictors of malignancy in bile duct brushings: a multi-reviewer analysis of 60 cases.
Mod Pathol. 2017 Sep;30(9):1273-1286. doi: 10.1038/modpathol.2017.51. Epub 2017 Jun 30.
9
DeepPap: Deep Convolutional Networks for Cervical Cell Classification.
IEEE J Biomed Health Inform. 2017 Nov;21(6):1633-1643. doi: 10.1109/JBHI.2017.2705583. Epub 2017 May 19.
10
Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases.
J Pathol Inform. 2016 Jul 26;7:29. doi: 10.4103/2153-3539.186902. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验