Suppr超能文献

DeepPap:用于宫颈细胞分类的深度卷积神经网络。

DeepPap: Deep Convolutional Networks for Cervical Cell Classification.

出版信息

IEEE J Biomed Health Inform. 2017 Nov;21(6):1633-1643. doi: 10.1109/JBHI.2017.2705583. Epub 2017 May 19.

Abstract

Automation-assisted cervical screening via Pap smear or liquid-based cytology (LBC) is a highly effective cell imaging based cancer detection tool, where cells are partitioned into "abnormal" and "normal" categories. However, the success of most traditional classification methods relies on the presence of accurate cell segmentations. Despite sixty years of research in this field, accurate segmentation remains a challenge in the presence of cell clusters and pathologies. Moreover, previous classification methods are only built upon the extraction of hand-crafted features, such as morphology and texture. This paper addresses these limitations by proposing a method to directly classify cervical cells-without prior segmentation-based on deep features, using convolutional neural networks (ConvNets). First, the ConvNet is pretrained on a natural image dataset. It is subsequently fine-tuned on a cervical cell dataset consisting of adaptively resampled image patches coarsely centered on the nuclei. In the testing phase, aggregation is used to average the prediction scores of a similar set of image patches. The proposed method is evaluated on both Pap smear and LBC datasets. Results show that our method outperforms previous algorithms in classification accuracy (98.3%), area under the curve (0.99) values, and especially specificity (98.3%), when applied to the Herlev benchmark Pap smear dataset and evaluated using five-fold cross validation. Similar superior performances are also achieved on the HEMLBC (H&E stained manual LBC) dataset. Our method is promising for the development of automation-assisted reading systems in primary cervical screening.

摘要

基于巴氏涂片或液基细胞学(LBC)的自动化宫颈筛查是一种基于细胞成像的高效癌症检测工具,它将细胞分为“异常”和“正常”两类。然而,大多数传统分类方法的成功都依赖于准确的细胞分割。尽管该领域已经有 60 年的研究,但在存在细胞簇和病变的情况下,准确的分割仍然是一个挑战。此外,以前的分类方法仅基于手工制作特征(如形态和纹理)的提取。本文通过提出一种直接基于深度特征对宫颈细胞进行分类的方法(无需先进行分割)来解决这些限制,该方法使用卷积神经网络(ConvNets)。首先,在自然图像数据集上对 ConvNet 进行预训练,然后使用自适应重采样的图像块对其进行微调,这些图像块大致以核为中心。在测试阶段,采用聚合方法对一组相似的图像块的预测分数进行平均。该方法在巴氏涂片和 LBC 数据集上进行了评估。结果表明,与之前的算法相比,我们的方法在应用于 Herlev 基准巴氏涂片数据集并使用五重交叉验证进行评估时,在分类准确性(98.3%)、曲线下面积(0.99)值,特别是特异性(98.3%)方面表现出色。在 HEMLBC(H&E 染色的手动 LBC)数据集上也取得了类似的优异性能。我们的方法有望用于开发自动化辅助的初级宫颈筛查阅读系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验