Suppr超能文献

用于实时症状监测的高效算法。

Efficient algorithms for real-time syndromic surveillance.

作者信息

Evans David, Sparks Ross

机构信息

Commonwealth Scientific and Industrial Research Organisation, Level 7, STARS Building, 296 Herston Road, Herston, QLD 4029, Australia.

Commonwealth Scientific and Industrial Research Organisation, Corner Vimiera & Pembroke Roads, Marsfield, NSW 2122, Australia.

出版信息

J Biomed Inform. 2023 Oct;146:104236. doi: 10.1016/j.jbi.2022.104236. Epub 2022 Oct 23.

Abstract

OBJECTIVE

Outbreaks of influenza-like diseases often cause spikes in the demand for hospital beds. Early detection of these outbreaks can enable improved management of hospital resources. The objective of this study was to test whether surveillance algorithms designed to be responsive to a wide range of anomalous decreases in the time between emergency department (ED) presentations with influenza-like illnesses provide efficient early detection of these outbreaks.

METHODS

Our study used data on ED presentations to major public hospitals in Queensland, Australia across 2017-2020. We developed surveillance algorithms for each hospital that flag potential outbreaks when the average time between successive ED presentations with influenza-like illnesses becomes anomalously small. We designed one set of algorithms to be responsive to a wide range of anomalous decreases in the time between presentations. These algorithms concurrently monitor three exponentially weighted moving averages (EWMAs) of the time between presentations and flag an outbreak when at least one EWMA falls below its control limit. We designed another set of algorithms to be highly responsive to narrower ranges of anomalous decreases in the time between presentations. These algorithms monitor one EWMA of the time between presentations and flag an outbreak when the EWMA falls below its control limit. Our algorithms use dynamic control limits to reflect that the average time between presentations depends on the time of year, time of day, and day of the week.

RESULTS

We compared the performance of the algorithms in detecting the start of two epidemic events at the hospital-level: the 2019 seasonal influenza outbreak and the early-2020 COVID-19 outbreak. The algorithm that concurrently monitors three EWMAs provided significantly earlier detection of these outbreaks than the algorithms that monitor one EWMA.

CONCLUSION

Surveillance algorithms designed to be responsive to a wide range of anomalous decreases in the time between ED presentations are highly efficient at detecting outbreaks of influenza-like diseases at the hospital level.

摘要

目的

流感样疾病的暴发常常导致医院病床需求激增。尽早发现这些暴发可改善医院资源管理。本研究的目的是检验旨在对急诊科(ED)出现流感样疾病的时间间隔出现的各种异常缩短做出反应的监测算法,能否有效地早期发现这些暴发。

方法

我们的研究使用了2017 - 2020年澳大利亚昆士兰州各大公立医院急诊科就诊的数据。我们为每家医院开发了监测算法,当连续出现流感样疾病的急诊科就诊时间间隔异常缩小时,标记潜在的暴发。我们设计了一组算法,以应对就诊时间间隔的各种异常缩短情况。这些算法同时监测就诊时间间隔的三个指数加权移动平均值(EWMA),当至少一个EWMA低于其控制限时标记暴发。我们设计了另一组算法,对就诊时间间隔较窄范围的异常缩短情况高度敏感。这些算法监测就诊时间间隔的一个EWMA,当EWMA低于其控制限时标记暴发。我们的算法使用动态控制限,以反映就诊时间间隔取决于一年中的时间、一天中的时间和一周中的日期。

结果

我们比较了这些算法在医院层面检测两次流行事件开始的表现:2019年季节性流感暴发和2020年初的新冠疫情暴发。同时监测三个EWMA的算法比监测一个EWMA的算法能显著更早地检测到这些暴发。

结论

旨在对急诊科就诊时间间隔的各种异常缩短做出反应的监测算法,在医院层面检测流感样疾病暴发方面效率极高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验