Dupuy C, Morignat E, Dorea F, Ducrot C, Calavas D, Gay E
Unité Epidémiologie,Agence nationale de sécurité sanitaire de l'alimentation,de l'environnement et du travail (ANSES),F-69364,Lyon,France.
Swedish Zoonosis Centre.Department of Disease Control and Epidemiology.National Veterinary Institute (SVA),Uppsala,Sweden.
Epidemiol Infect. 2015 Sep;143(12):2559-69. doi: 10.1017/S0950268814003495. Epub 2015 Jan 8.
The objective of this study was to assess the performance of several algorithms for outbreak detection based on weekly proportions of whole carcass condemnations. Data from one French slaughterhouse over the 2005-2009 period were used (177 098 slaughtered cattle, 0.97% of whole carcass condemnations). The method involved three steps: (i) preparation of an outbreak-free historical baseline over 5 years, (ii) simulation of over 100 years of baseline time series with injection of artificial outbreak signals with several shapes, durations and magnitudes, and (iii) assessment of the performance (sensitivity, specificity, outbreak detection precocity) of several algorithms to detect these artificial outbreak signals. The algorithms tested included the Shewart p chart, confidence interval of the negative binomial model, the exponentially weighted moving average (EWMA); and cumulative sum (CUSUM). The highest sensitivity was obtained using a negative binomial algorithm and the highest specificity with CUSUM or EWMA. EWMA sensitivity was too low to select this algorithm for efficient outbreak detection. CUSUM's performance was complementary to the negative binomial algorithm. The use of both algorithms on real data for a prospective investigation of the whole carcass condemnation rate as a syndromic surveillance indicator could be relevant. Shewart could also be a good option considering its high sensitivity and simplicity of implementation.
本研究的目的是评估基于整只屠体判废周比例的几种疫情检测算法的性能。使用了一家法国屠宰场2005 - 2009年期间的数据(177098头屠宰牛,整只屠体判废率为0.97%)。该方法包括三个步骤:(i) 准备一个5年无疫情的历史基线,(ii) 模拟100多年的基线时间序列,并注入具有多种形状、持续时间和幅度的人工疫情信号,以及(iii) 评估几种算法检测这些人工疫情信号的性能(敏感性、特异性、疫情检测早熟性)。测试的算法包括休哈特p图、负二项式模型的置信区间、指数加权移动平均(EWMA)和累积和(CUSUM)。使用负二项式算法获得了最高的敏感性,使用CUSUM或EWMA获得了最高的特异性。EWMA的敏感性太低,无法选择该算法进行有效的疫情检测。CUSUM的性能与负二项式算法互补。将这两种算法用于实际数据,对作为症状监测指标的整只屠体判废率进行前瞻性调查可能是有意义的。考虑到休哈特图的高敏感性和实施的简单性,它也可能是一个不错的选择。