Suppr超能文献

使用肉类检验数据进行症状监测的试点模拟研究:利用成年牛整 carcass 判定来评估几种疫情检测算法的性能。 (注:这里“carcass”常见释义为“胴体、 carcass 体” ,结合语境这里可能是指牛的整个躯体部分,但原英文中该词拼写有误,正确拼写为“carcass” )

Pilot simulation study using meat inspection data for syndromic surveillance: use of whole carcass condemnation of adult cattle to assess the performance of several algorithms for outbreak detection.

作者信息

Dupuy C, Morignat E, Dorea F, Ducrot C, Calavas D, Gay E

机构信息

Unité Epidémiologie,Agence nationale de sécurité sanitaire de l'alimentation,de l'environnement et du travail (ANSES),F-69364,Lyon,France.

Swedish Zoonosis Centre.Department of Disease Control and Epidemiology.National Veterinary Institute (SVA),Uppsala,Sweden.

出版信息

Epidemiol Infect. 2015 Sep;143(12):2559-69. doi: 10.1017/S0950268814003495. Epub 2015 Jan 8.

Abstract

The objective of this study was to assess the performance of several algorithms for outbreak detection based on weekly proportions of whole carcass condemnations. Data from one French slaughterhouse over the 2005-2009 period were used (177 098 slaughtered cattle, 0.97% of whole carcass condemnations). The method involved three steps: (i) preparation of an outbreak-free historical baseline over 5 years, (ii) simulation of over 100 years of baseline time series with injection of artificial outbreak signals with several shapes, durations and magnitudes, and (iii) assessment of the performance (sensitivity, specificity, outbreak detection precocity) of several algorithms to detect these artificial outbreak signals. The algorithms tested included the Shewart p chart, confidence interval of the negative binomial model, the exponentially weighted moving average (EWMA); and cumulative sum (CUSUM). The highest sensitivity was obtained using a negative binomial algorithm and the highest specificity with CUSUM or EWMA. EWMA sensitivity was too low to select this algorithm for efficient outbreak detection. CUSUM's performance was complementary to the negative binomial algorithm. The use of both algorithms on real data for a prospective investigation of the whole carcass condemnation rate as a syndromic surveillance indicator could be relevant. Shewart could also be a good option considering its high sensitivity and simplicity of implementation.

摘要

本研究的目的是评估基于整只屠体判废周比例的几种疫情检测算法的性能。使用了一家法国屠宰场2005 - 2009年期间的数据(177098头屠宰牛,整只屠体判废率为0.97%)。该方法包括三个步骤:(i) 准备一个5年无疫情的历史基线,(ii) 模拟100多年的基线时间序列,并注入具有多种形状、持续时间和幅度的人工疫情信号,以及(iii) 评估几种算法检测这些人工疫情信号的性能(敏感性、特异性、疫情检测早熟性)。测试的算法包括休哈特p图、负二项式模型的置信区间、指数加权移动平均(EWMA)和累积和(CUSUM)。使用负二项式算法获得了最高的敏感性,使用CUSUM或EWMA获得了最高的特异性。EWMA的敏感性太低,无法选择该算法进行有效的疫情检测。CUSUM的性能与负二项式算法互补。将这两种算法用于实际数据,对作为症状监测指标的整只屠体判废率进行前瞻性调查可能是有意义的。考虑到休哈特图的高敏感性和实施的简单性,它也可能是一个不错的选择。

相似文献

引用本文的文献

本文引用的文献

5
Assessment of syndromic surveillance in Europe.欧洲综合征监测评估。
Lancet. 2011 Nov 26;378(9806):1833-4. doi: 10.1016/S0140-6736(11)60834-9.
10
Time series modeling for syndromic surveillance.用于症状监测的时间序列建模
BMC Med Inform Decis Mak. 2003 Jan 23;3:2. doi: 10.1186/1472-6947-3-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验