Suppr超能文献

一种用于诊断新型冠状病毒肺炎的新型次声与可听声机器学习方法。

A novel infrasound and audible machine-learning approach to the diagnosis of COVID-19.

作者信息

Dori Guy, Bachner-Hinenzon Noa, Kasim Nour, Zaidani Haitem, Perl Sivan Haia, Maayan Shlomo, Shneifi Amin, Kian Yousef, Tiosano Tuvia, Adler Doron, Adir Yochai

机构信息

HaEmek Medical Center, Afula, Israel.

Sanolla, Nesher, Israel.

出版信息

ERJ Open Res. 2022 Oct 24;8(4). doi: 10.1183/23120541.00152-2022. eCollection 2022 Oct.

Abstract

BACKGROUND

The coronavirus disease 2019 (COVID-19) outbreak has rapidly spread around the world, causing a global public health and economic crisis. A critical limitation in detecting COVID-19-related pneumonia is that it is often manifested as a "silent pneumonia", pulmonary auscultation that sounds "normal" using a standard stethoscope. Chest computed tomography is the gold standard for detecting COVID-19 pneumonia; however, radiation exposure, availability and cost preclude its utilisation as a screening tool for COVID-19 pneumonia. In this study we hypothesised that COVID-19 pneumonia, "silent" to the human ear using a standard stethoscope, is detectable using a full-spectrum auscultation device that contains a machine-learning analysis.

METHODS

Lung sound signals were acquired, using a novel full-spectrum (3-2000 Hz) stethoscope, from 164 COVID-19 pneumonia patients, 61 non-COVID-19 pneumonia patients and 141 healthy subjects. A machine-learning classifier was constructed and the data were classified into three groups: 1) normal lung sounds, 2) COVID-19 pneumonia and 3) non-COVID-19 pneumonia.

RESULTS

Standard auscultation found that 72% of the non-COVID-19 pneumonia patients had abnormal lung sounds compared with only 25% of the COVID-19 pneumonia patients. The classifier's sensitivity and specificity for the detection of COVID-19 pneumonia were 97% and 93%, respectively, when analysing the sound and infrasound data, and they were reduced to 93% and 80%, respectively, without the infrasound data (p<0.01 difference in receiver operating characteristic curves with and without infrasound).

CONCLUSIONS

This study reveals that useful clinical information exists in the infrasound spectrum of COVID-19-related pneumonia and machine-learning analysis applied to the full spectrum of lung sounds is useful in its detection.

摘要

背景

2019年冠状病毒病(COVID-19)疫情已在全球迅速蔓延,引发了全球公共卫生和经济危机。检测COVID-19相关肺炎的一个关键限制是,它通常表现为“隐性肺炎”,使用标准听诊器进行肺部听诊时听起来“正常”。胸部计算机断层扫描是检测COVID-19肺炎的金标准;然而,辐射暴露、可用性和成本使其无法用作COVID-19肺炎的筛查工具。在本研究中,我们假设,使用标准听诊器时人耳“听不到”的COVID-19肺炎,可通过包含机器学习分析的全谱听诊设备检测到。

方法

使用新型全谱(3-2000赫兹)听诊器,采集了164例COVID-19肺炎患者、61例非COVID-19肺炎患者和141名健康受试者的肺音信号。构建了一个机器学习分类器,并将数据分为三组:1)正常肺音、2)COVID-19肺炎和3)非COVID-19肺炎。

结果

标准听诊发现,72%的非COVID-19肺炎患者有异常肺音,而COVID-19肺炎患者中只有25%有异常肺音。在分析声音和次声数据时,该分类器检测COVID-19肺炎的敏感性和特异性分别为97%和93%,在没有次声数据时,敏感性和特异性分别降至93%和80%(有次声和无次声时受试者操作特征曲线的差异p<0.01)。

结论

本研究表明,COVID-19相关肺炎的次声谱中存在有用的临床信息,应用于全谱肺音的机器学习分析对其检测有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe3/9589328/91b0dd56cb58/00152-2022.01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验