Suppr超能文献

基于人工智能的听诊器用于主动脉瓣狭窄的诊断。

Artificial Intelligence-Based Stethoscope for the Diagnosis of Aortic Stenosis.

机构信息

Department of Cardiology, Lady Davis Carmel Medical Center, Haifa, Israel.

Department of Cardiology, Tel Aviv Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Israel.

出版信息

Am J Med. 2022 Sep;135(9):1124-1133. doi: 10.1016/j.amjmed.2022.04.032. Epub 2022 May 28.

Abstract

BACKGROUND

The diagnostic accuracy of the stethoscope is limited and highly dependent on clinical expertise. Our purpose was to develop an electronic stethoscope, based on artificial intelligence (AI) and infrasound, for the diagnosis of aortic stenosis (AS).

METHODS

We used an electronic stethoscope (VoqX; Sanolla, Nesher, Israel) with subsonic capabilities and acoustic range of 3-2000 Hz. The study had 2 stages. In the first stage, using the VoqX, we recorded heart sounds from 100 patients referred for echocardiography (derivation group), 50 with moderate or severe AS and 50 without valvular disease. An AI-based supervised learning model was applied to the auscultation data from the first 100 patients used for training, to construct a diagnostic algorithm that was then tested on a validation group (50 other patients, 25 with AS and 25 without AS). In the second stage, conducted at a different medical center, we tested the device on 106 additional patients referred for echocardiography, which included patients with other valvular diseases.

RESULTS

Using data collected at the aortic and pulmonic auscultation points from the derivation group, the AI-based algorithm identified moderate or severe AS with 86% sensitivity and 100% specificity. When applied to the validation group, the sensitivity was 84% and specificity 92%; and in the additional testing group, 90% and 84%, respectively. The sensitivity was 55% for mild, 76% for moderate, and 93% for severe AS.

CONCLUSION

Our initial findings show that an AI-based stethoscope with infrasound capabilities can accurately diagnose AS. AI-based electronic auscultation is a promising new tool for automatic screening and diagnosis of valvular heart disease.

摘要

背景

听诊器的诊断准确性有限,高度依赖临床专业知识。我们的目的是开发一种基于人工智能(AI)和次声的电子听诊器,用于诊断主动脉瓣狭窄(AS)。

方法

我们使用了一种具有次声能力和 3-2000 Hz 声学范围的电子听诊器(VoqX;Sanolla,Nesher,以色列)。该研究分为两个阶段。在第一阶段,使用 VoqX 从 100 名因超声心动图就诊的患者(推导组)中记录心音,其中 50 名患者患有中度或重度 AS,50 名患者无瓣膜疾病。应用基于 AI 的监督学习模型对前 100 名患者的听诊数据进行训练,构建诊断算法,然后在验证组(另外 50 名患者,25 名患有 AS,25 名没有 AS)上进行测试。在第二阶段,在另一家医疗中心进行,我们在 106 名因超声心动图就诊的额外患者身上测试了该设备,其中包括患有其他瓣膜疾病的患者。

结果

使用推导组在主动脉和肺动脉听诊点收集的数据,基于 AI 的算法识别出中度或重度 AS 的敏感性为 86%,特异性为 100%。当应用于验证组时,敏感性为 84%,特异性为 92%;在额外的测试组中,分别为 90%和 84%。轻度 AS 的敏感性为 55%,中度 AS 的敏感性为 76%,重度 AS 的敏感性为 93%。

结论

我们的初步发现表明,具有次声能力的基于 AI 的听诊器可以准确诊断 AS。基于 AI 的电子听诊是一种有前途的自动筛查和诊断瓣膜性心脏病的新工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验