Suppr超能文献

一个使用电子听诊器从胸壁记录的肺音数据集。

A dataset of lung sounds recorded from the chest wall using an electronic stethoscope.

作者信息

Fraiwan Mohammad, Fraiwan Luay, Khassawneh Basheer, Ibnian Ali

机构信息

Department of Computer Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.

Department of Biomedical Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.

出版信息

Data Brief. 2021 Feb 26;35:106913. doi: 10.1016/j.dib.2021.106913. eCollection 2021 Apr.

Abstract

The advancement of stethoscope technology has enabled high quality recording of patient sounds. We used an electronic stethoscope to record lung sounds from healthy and unhealthy subjects. The dataset includes sounds from seven ailments (i.e., asthma, heart failure, pneumonia, bronchitis, pleural effusion, lung fibrosis, and chronic obstructive pulmonary disease (COPD)) as well as normal breathing sounds. The dataset presented in this article contains the audio recordings from the examination of the chest wall at various vantage points. The stethoscope placement on the subject was determined by the specialist physician performing the diagnosis. Each recording was replicated three times corresponding to various frequency filters that emphasize certain bodily sounds. The dataset can be used for the development of automated methods that detect pulmonary diseases from lung sounds or identify the correct type of lung sound. The same methods can also be applied to the study of heart sounds.

摘要

听诊器技术的进步使得能够高质量地记录患者的声音。我们使用电子听诊器记录健康和不健康受试者的肺部声音。该数据集包括来自七种疾病(即哮喘、心力衰竭、肺炎、支气管炎、胸腔积液、肺纤维化和慢性阻塞性肺疾病(COPD))的声音以及正常呼吸声。本文呈现的数据集包含在不同有利位置对胸壁检查的音频记录。听诊器在受试者身上的放置位置由进行诊断的专科医生确定。每个记录对应于强调某些身体声音的各种频率滤波器被复制了三次。该数据集可用于开发从肺部声音检测肺部疾病或识别正确肺部声音类型的自动化方法。同样的方法也可应用于心音研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84bb/7937981/61d079390db9/gr1.jpg

相似文献

1
A dataset of lung sounds recorded from the chest wall using an electronic stethoscope.
Data Brief. 2021 Feb 26;35:106913. doi: 10.1016/j.dib.2021.106913. eCollection 2021 Apr.
2
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.
4
AI Based Diagnosis of Pneumonia.
Wirel Pers Commun. 2022;126(4):3677-3692. doi: 10.1007/s11277-022-09885-7. Epub 2022 Jun 29.
5
Lung and Heart Sounds Analysis: State-of-the-Art and Future Trends.
Crit Rev Biomed Eng. 2018;46(1):33-52. doi: 10.1615/CritRevBiomedEng.2018025112.
6
Regularity and mechanism of fake crackle noise in an electronic stethoscope.
Front Physiol. 2022 Dec 12;13:1079468. doi: 10.3389/fphys.2022.1079468. eCollection 2022.
7
Electronic Stethoscope Filtering Mimics the Perceived Sound Characteristics of Acoustic Stethoscope.
IEEE J Biomed Health Inform. 2021 May;25(5):1542-1549. doi: 10.1109/JBHI.2020.3020494. Epub 2021 May 11.
9
A visual stethoscope to detect the position of the tracheal tube.
Anesth Analg. 2009 Dec;109(6):1836-42. doi: 10.1213/ANE.0b013e3181bb4967.
10
Noisy Neonatal Chest Sound Separation for High-Quality Heart and Lung Sounds.
IEEE J Biomed Health Inform. 2023 Jun;27(6):2635-2646. doi: 10.1109/JBHI.2022.3215995. Epub 2023 Jun 5.

引用本文的文献

1
High-accuracy lung sound classification for healthy versus unhealthy diagnosis using artificial neural network.
Front Bioeng Biotechnol. 2025 Jul 2;13:1583416. doi: 10.3389/fbioe.2025.1583416. eCollection 2025.
2
Neural network based AI model for lung health assessment.
Sci Rep. 2025 Jul 12;15(1):25177. doi: 10.1038/s41598-025-09524-8.
3
TriSpectraKAN: a novel approach for COPD detection via lung sound analysis.
Sci Rep. 2025 Feb 21;15(1):6296. doi: 10.1038/s41598-024-82781-1.
6
Current Diagnostic Techniques for Pneumonia: A Scoping Review.
Sensors (Basel). 2024 Jul 1;24(13):4291. doi: 10.3390/s24134291.
8
Improved recovery of cardiac auscultation sounds using modified cosine transform and LSTM-based masking.
Med Biol Eng Comput. 2024 Aug;62(8):2485-2497. doi: 10.1007/s11517-024-03088-x. Epub 2024 Apr 17.
9
Machine Learning for Automated Classification of Abnormal Lung Sounds Obtained from Public Databases: A Systematic Review.
Bioengineering (Basel). 2023 Oct 2;10(10):1155. doi: 10.3390/bioengineering10101155.
10
Deep learning-based lung sound analysis for intelligent stethoscope.
Mil Med Res. 2023 Sep 26;10(1):44. doi: 10.1186/s40779-023-00479-3.

本文引用的文献

2
Heart sound and lung sound separation algorithms: a review.
J Med Eng Technol. 2017 Jan;41(1):13-21. doi: 10.1080/03091902.2016.1209589. Epub 2016 Jul 15.
3
Respiratory rate assessments using a dual-accelerometer device.
Respir Physiol Neurobiol. 2014 Jan 15;191:60-6. doi: 10.1016/j.resp.2013.11.003. Epub 2013 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验