Suppr超能文献

从无序中寻找规律:利用无监督机器学习揭示异质纳米材料的合成-纳米形态关系

Seeking regularity from irregularity: unveiling the synthesis-nanomorphology relationships of heterogeneous nanomaterials using unsupervised machine learning.

作者信息

Yao Lehan, An Hyosung, Zhou Shan, Kim Ahyoung, Luijten Erik, Chen Qian

机构信息

Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801, USA.

Department of Petrochemical Materials Engineering, Chonnam National University, Yeosu, 59631, Korea.

出版信息

Nanoscale. 2022 Nov 17;14(44):16479-16489. doi: 10.1039/d2nr03712b.

Abstract

Nanoscale morphology of functional materials determines their chemical and physical properties. However, despite increasing use of transmission electron microscopy (TEM) to directly image nanomorphology, it remains challenging to quantify the information embedded in TEM data sets, and to use nanomorphology to link synthesis and processing conditions to properties. We develop an automated, descriptor-free analysis workflow for TEM data that utilizes convolutional neural networks and unsupervised learning to quantify and classify nanomorphology, and thereby reveal synthesis-nanomorphology relationships in three different systems. While TEM records nanomorphology readily in two-dimensional (2D) images or three-dimensional (3D) tomograms, we advance the analysis of these images by identifying and applying a universal shape fingerprint function to characterize nanomorphology. After dimensionality reduction through principal component analysis, this function then serves as the input for morphology grouping through unsupervised learning. We demonstrate the wide applicability of our workflow to both 2D and 3D TEM data sets, and to both inorganic and organic nanomaterials, including tetrahedral gold nanoparticles mixed with irregularly shaped impurities, hybrid polymer-patched gold nanoprisms, and polyamide membranes with irregular and heterogeneous 3D crumple structures. In each of these systems, unsupervised nanomorphology grouping identifies both the diversity and the similarity of the nanomaterial across different synthesis conditions, revealing how synthetic parameters guide nanomorphology development. Our work opens possibilities for enhancing synthesis of nanomaterials through artificial intelligence and for understanding and controlling complex nanomorphology, both for 2D systems and in the far less explored case of 3D structures, such as those with embedded voids or hidden interfaces.

摘要

功能材料的纳米级形态决定了它们的化学和物理性质。然而,尽管透射电子显微镜(TEM)越来越多地用于直接成像纳米形态,但量化TEM数据集中所包含的信息,以及利用纳米形态将合成和加工条件与性能联系起来,仍然具有挑战性。我们为TEM数据开发了一种自动化的、无需描述符的分析工作流程,该流程利用卷积神经网络和无监督学习来量化和分类纳米形态,从而揭示三种不同系统中的合成-纳米形态关系。虽然TEM可以在二维(2D)图像或三维(3D)断层扫描中轻松记录纳米形态,但我们通过识别和应用通用形状指纹函数来表征纳米形态,推进了对这些图像的分析。通过主成分分析进行降维后,该函数随后作为无监督学习进行形态分组的输入。我们证明了我们的工作流程对2D和3D TEM数据集以及无机和有机纳米材料都具有广泛的适用性,包括与不规则形状杂质混合的四面体金纳米颗粒、混合聚合物修补的金纳米棱镜,以及具有不规则和异质3D褶皱结构的聚酰胺膜。在这些系统中的每一个中,无监督纳米形态分组都识别出了不同合成条件下纳米材料的多样性和相似性,揭示了合成参数如何指导纳米形态的发展。我们的工作为通过人工智能增强纳米材料的合成以及理解和控制复杂的纳米形态开辟了可能性,无论是对于2D系统还是在探索较少的3D结构(如具有嵌入式空隙或隐藏界面的结构)的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验