Suppr超能文献

自动检测金属纳米颗粒:一种用于金属纳米颗粒透射电子显微镜图像自动分析的无监督机器学习算法。

AutoDetect-mNP: An Unsupervised Machine Learning Algorithm for Automated Analysis of Transmission Electron Microscope Images of Metal Nanoparticles.

作者信息

Wang Xingzhi, Li Jie, Ha Hyun Dong, Dahl Jakob C, Ondry Justin C, Moreno-Hernandez Ivan, Head-Gordon Teresa, Alivisatos A Paul

机构信息

Department of Chemistry, University of California, Berkeley, California 94720, United States.

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

出版信息

JACS Au. 2021 Mar 22;1(3):316-327. doi: 10.1021/jacsau.0c00030. Epub 2021 Feb 25.

Abstract

The synthesis quality of artificial inorganic nanocrystals is most often assessed by transmission electron microscopy (TEM) for which high-throughput advances have dramatically increased both the quantity and information richness of metal nanoparticle (mNP) characterization. Existing automated data analysis algorithms of TEM mNP images generally adopt a supervised approach, requiring a significant effort in human preparation of labeled data that reduces objectivity, efficiency, and generalizability. We have developed an unsupervised algorithm AutoDetect-mNP for automated analysis of TEM images that objectively extracts morphological information on convex mNPs from TEM images based on their shape attributes, requiring little to no human input in the process. The performance of AutoDetect-mNP is tested on two data sets of bright field TEM images of Au nanoparticles with different shapes and further extended to palladium nanocubes and cadmium selenide quantum dots, demonstrating that the algorithm is quantitatively reliable and can thus serve as a generalizable measure of the morphology distributions of any mNP synthesis. The AutoDetect-mNP algorithm will aid in future developments of high-throughput characterization of mNPs and the future advent of time-resolved TEM studies that can investigate reaction mechanisms of mNP synthesis and reactivity.

摘要

人工无机纳米晶体的合成质量通常通过透射电子显微镜(TEM)进行评估,高通量技术的进步极大地增加了金属纳米颗粒(mNP)表征的数量和信息丰富度。现有的TEM mNP图像自动数据分析算法通常采用监督方法,需要人工大量准备标记数据,这降低了客观性、效率和通用性。我们开发了一种无监督算法AutoDetect-mNP,用于TEM图像的自动分析,该算法基于凸形mNP的形状属性从TEM图像中客观地提取形态信息,在此过程中几乎不需要人工输入。AutoDetect-mNP的性能在两组不同形状的金纳米颗粒明场TEM图像数据集上进行了测试,并进一步扩展到钯纳米立方体和硒化镉量子点,表明该算法在定量方面是可靠的,因此可以作为任何mNP合成形态分布的通用度量。AutoDetect-mNP算法将有助于mNP高通量表征的未来发展以及时间分辨TEM研究的未来出现,后者可以研究mNP合成和反应性的反应机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13b0/8395696/0f94aead200d/au0c00030_0001.jpg

相似文献

2
Statistically Representative Metrology of Nanoparticles via Unsupervised Machine Learning of TEM Images.
Nanomaterials (Basel). 2021 Oct 14;11(10):2706. doi: 10.3390/nano11102706.
3
Statistical Characterization of the Morphologies of Nanoparticles through Machine Learning Based Electron Microscopy Image Analysis.
ACS Nano. 2020 Dec 22;14(12):17125-17133. doi: 10.1021/acsnano.0c06809. Epub 2020 Nov 24.
8
Metrology of convex-shaped nanoparticles soft classification machine learning of TEM images.
Nanoscale Adv. 2021 Oct 13;3(24):6956-6964. doi: 10.1039/d1na00524c. eCollection 2021 Dec 7.
10
Formulation and characterization of a covalently coated magnetic nanogel.
J Nanosci Nanotechnol. 2009 Jul;9(7):4128-34. doi: 10.1166/jnn.2009.m21.

引用本文的文献

2
Automated Gold Nanorod Spectral Morphology Analysis Pipeline.
ACS Nano. 2024 Dec 24;18(51):34646-34655. doi: 10.1021/acsnano.4c09753. Epub 2024 Dec 13.
3
4
6
Machine Learning Applications in Optical Fiber Sensing: A Research Agenda.
Sensors (Basel). 2024 Mar 29;24(7):2200. doi: 10.3390/s24072200.
7
Electron Microscopy of Catalysts: The Missing Cornerstone in Heterogeneous Catalysis Research?
Chem Rev. 2023 Dec 13;123(23):13374-13418. doi: 10.1021/acs.chemrev.3c00352. Epub 2023 Nov 15.
8
Automated analysis of transmission electron micrographs of metallic nanoparticles by machine learning.
Nanoscale Adv. 2023 Mar 23;5(8):2318-2326. doi: 10.1039/d2na00781a. eCollection 2023 Apr 11.
9
Navigating with chemometrics and machine learning in chemistry.
Artif Intell Rev. 2023 Jan 24:1-26. doi: 10.1007/s10462-023-10391-w.
10
Metrology of convex-shaped nanoparticles soft classification machine learning of TEM images.
Nanoscale Adv. 2021 Oct 13;3(24):6956-6964. doi: 10.1039/d1na00524c. eCollection 2021 Dec 7.

本文引用的文献

1
Colloidal Synthesis Path to 2D Crystalline Quantum Dot Superlattices.
ACS Nano. 2021 Feb 23;15(2):2251-2262. doi: 10.1021/acsnano.0c07202. Epub 2020 Dec 30.
3
A Bayesian experimental autonomous researcher for mechanical design.
Sci Adv. 2020 Apr 10;6(15):eaaz1708. doi: 10.1126/sciadv.aaz1708. eCollection 2020 Apr.
4
Gold Nanorod Synthesis with Small Thiolated Molecules.
Langmuir. 2020 Apr 14;36(14):3758-3769. doi: 10.1021/acs.langmuir.0c00302. Epub 2020 Apr 3.
5
Progress and prospects for accelerating materials science with automated and autonomous workflows.
Chem Sci. 2019 Sep 20;10(42):9640-9649. doi: 10.1039/c9sc03766g. eCollection 2019 Nov 14.
8
Software tools for automated transmission electron microscopy.
Nat Methods. 2019 Jun;16(6):471-477. doi: 10.1038/s41592-019-0396-9. Epub 2019 May 13.
10
High-throughput, semi-automated quantitative STEM mass measurement of supported metal nanoparticles using a conventional TEM/STEM.
Ultramicroscopy. 2017 Nov;182:145-155. doi: 10.1016/j.ultramic.2017.07.004. Epub 2017 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验