Shao Yinming, Sternbach Aaron J, Kim Brian S Y, Rikhter Andrey A, Xu Xinyi, De Giovannini Umberto, Jing Ran, Chae Sang Hoon, Sun Zhiyuan, Lee Seng Huat, Zhu Yanglin, Mao Zhiqiang, Hone James C, Queiroz Raquel, Millis Andrew J, Schuck P James, Rubio Angel, Fogler Michael M, Basov Dmitri N
Department of Physics, Columbia University, New York, NY 10027, USA.
Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.
Sci Adv. 2022 Oct 28;8(43):eadd6169. doi: 10.1126/sciadv.add6169. Epub 2022 Oct 26.
Metals are canonical plasmonic media at infrared and optical wavelengths, allowing one to guide and manipulate light at the nanoscale. A special form of optical waveguiding is afforded by highly anisotropic crystals revealing the opposite signs of the dielectric functions along orthogonal directions. These media are classified as hyperbolic and include crystalline insulators, semiconductors, and artificial metamaterials. Layered anisotropic metals are also anticipated to support hyperbolic waveguiding. However, this behavior remains elusive, primarily because interband losses arrest the propagation of infrared modes. Here, we report on the observation of propagating hyperbolic waves in a prototypical layered nodal-line semimetal ZrSiSe. The observed waveguiding originates from polaritonic hybridization between near-infrared light and nodal-line plasmons. Unique nodal electronic structures simultaneously suppress interband loss and boost the plasmonic response, ultimately enabling the propagation of infrared modes through the bulk of the crystal.
金属是红外和光学波长下典型的等离子体介质,能够在纳米尺度上引导和操控光。高度各向异性的晶体呈现出沿正交方向介电函数的相反符号,从而提供了一种特殊形式的光波导。这些介质被归类为双曲线型,包括晶体绝缘体、半导体和人工超材料。层状各向异性金属也有望支持双曲线型波导。然而,这种行为仍然难以捉摸,主要是因为带间损耗阻碍了红外模式的传播。在此,我们报告了在典型的层状节线半金属ZrSiSe中对传播的双曲线型波的观测。观察到的波导源于近红外光与节线等离子体之间的极化子杂化。独特的节线电子结构同时抑制带间损耗并增强等离子体响应,最终使红外模式能够在晶体块体中传播。