Ramalho Tiago P, Chopin Guillaume, Salman Lina, Baumgartner Vincent, Heinicke Christiane, Verseux Cyprien
Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany.
NPJ Microgravity. 2022 Oct 26;8(1):43. doi: 10.1038/s41526-022-00240-5.
The sustainability of crewed infrastructures on Mars will depend on their abilities to produce consumables on site. These abilities may be supported by diazotrophic, rock-leaching cyanobacteria: from resources naturally available on Mars, they could feed downstream biological processes and lead to the production of oxygen, food, fuels, structural materials, pharmaceuticals and more. The relevance of such a system will be dictated largely by the efficiency of regolith utilization by cyanobacteria. We therefore describe the growth dynamics of Anabaena sp. PCC 7938 as a function of MGS-1 concentration (a simulant of a widespread type of Martian regolith), of perchlorate concentration, and of their combination. To help devise improvement strategies and predict dynamics in regolith of differing composition, we identify the limiting element in MGS-1 - phosphorus - and its concentration-dependent effect on growth. Finally, we show that, while maintaining cyanobacteria and regolith in a single compartment can make the design of cultivation processes challenging, preventing direct physical contact between cells and grains may reduce growth. Overall, we hope for the knowledge gained here to support both the design of cultivation hardware and the modeling of cyanobacterium growth within.
火星上载人基础设施的可持续性将取决于其在当地生产消耗品的能力。固氮、岩石浸出蓝细菌可能会支持这些能力:利用火星上天然可用的资源,它们可以为下游生物过程提供养分,并导致氧气、食物、燃料、结构材料、药品等的生产。这样一个系统的相关性将在很大程度上取决于蓝细菌对风化层的利用效率。因此,我们描述了鱼腥藻PCC 7938的生长动力学,它是MGS-1浓度(一种广泛存在的火星风化层模拟物)、高氯酸盐浓度及其组合的函数。为了帮助制定改进策略并预测不同成分风化层中的动力学,我们确定了MGS-1中的限制元素——磷——及其对生长的浓度依赖性影响。最后,我们表明,虽然将蓝细菌和风化层保持在单个隔室中会使培养过程的设计具有挑战性,但防止细胞与颗粒之间的直接物理接触可能会降低生长速度。总体而言,我们希望这里获得的知识能够支持培养硬件的设计以及其中蓝细菌生长的建模。