Verseux Cyprien, Ramalho Tiago P, Bohuon Emma, Kunst Nils, Lang Viktoria, Heinicke Christiane
Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, Germany.
Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany.
NPJ Microgravity. 2024 Nov 2;10(1):101. doi: 10.1038/s41526-024-00440-1.
In situ resource utilization systems based on cyanobacteria could support the sustainability of crewed missions to Mars. However, their resource-efficiency will depend on the extent to which gases from the Martian atmosphere must be processed to support cyanobacterial growth. The main purpose of the present work is to help assess this extent. We therefore start with investigating the impact of changes in atmospheric conditions on the photoautotrophic, diazotrophic growth of the cyanobacterium Anabaena sp. PCC 7938. We show that lowering atmospheric pressure from 1 bar down to 80 hPa, without changing the partial pressures of metabolizable gases, does not reduce growth rates. We also provide equations, analogous to Monod's, that describe the dependence of growth rates on the partial pressures of CO and N. We then outline the relationships between atmospheric pressure and composition, the minimal mass of a photobioreactor's outer walls (which is dependent on the inner-outer pressure difference), and growth rates. Relying on these relationships, we demonstrate that the structural mass of a photobioreactor can be decreased - without affecting cyanobacterial productivity - by reducing the inner gas pressure. We argue, however, that this reduction would be small next to the equivalent system mass of the cultivation system. A greater impact on resource-efficiency could come from the selection of atmospheric conditions which minimize gas processing requirements while adequately supporting cyanobacterial growth. The data and equations we provide can help identify these conditions.
基于蓝细菌的原位资源利用系统能够支持载人火星任务的可持续性。然而,它们的资源利用效率将取决于为支持蓝细菌生长而必须处理的火星大气气体的程度。本研究的主要目的是帮助评估这一程度。因此,我们首先研究大气条件变化对蓝细菌鱼腥藻PCC 7938光合自养、固氮生长的影响。我们发现,在不改变可代谢气体分压的情况下,将大气压力从1巴降至80百帕不会降低生长速率。我们还提供了类似于莫诺德方程的公式,描述了生长速率与一氧化碳和氮气分压之间的关系。然后,我们概述了大气压力与成分、光生物反应器外壁的最小质量(这取决于内外压力差)以及生长速率之间的关系。基于这些关系,我们证明,通过降低内部气体压力,可以在不影响蓝细菌生产力的情况下减少光生物反应器的结构质量。然而,我们认为,与培养系统的等效系统质量相比,这种减少幅度较小。对资源利用效率产生更大影响的可能来自于选择能够在充分支持蓝细菌生长的同时将气体处理需求降至最低的大气条件。我们提供的数据和公式有助于确定这些条件。