Suppr超能文献

使用环氧树脂制造的用于苛刻化学条件和长时间实验的聚合物微流控器件。

Polymeric Microfluidic Devices Fabricated Using Epoxy Resin for Chemically Demanding and Day-Long Experiments.

机构信息

Department of Mechanical System Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea.

Department of Aeronautics, Mechanical and Electronic Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea.

出版信息

Biosensors (Basel). 2022 Oct 7;12(10):838. doi: 10.3390/bios12100838.

Abstract

(PDMS) is a widely used material in laboratories for fabricating microfluidic devices with a rapid and reproducible prototypingability, owing to its inherent properties (e.g., flexibility, air permeability, and transparency). However, the PDMS channel is easily deformed under pressures applied to generate flows because of its elasticity, which can affect the robustness of experiments. In addition, air permeability of PDMS causes the pervaporation of water, and its porous structure absorbs oil and even small hydrophobic molecules, rendering it inappropriate for chemically demanding or day-long experiments. In this study, we develop a rapid and reproducible fabrication method for polymer-based rigid microfluidic devices, using epoxy resin that can overcome the limitations of PDMS channels, which are structurally and chemically robust. We first optimize a high-resolution fabrication protocol to achieve convenient and repeatable prototyping of polymeric devices via epoxy casting using PDMS soft molds. In addition, we compare the velocity changes in PDMS microchannels by tracking fluorescent particles in various flows (~133 μL/min) to demonstrate the structural robustness of the polymeric device. Furthermore, by comparing the adsorption of fluorescent hydrophobic chemicals and the pervaporation through channel walls, we demonstrate the excellent chemical resistance of the polymeric device and its suitability for day-long experiments. The rigid polymeric device can facilitate lab-on-chip research and enable various applications, such as high-performance liquid chromatography, anaerobic bacterial culture, and polymerase chain reaction, which require chemically or physically demanding experiments.

摘要

(聚二甲基硅氧烷)(PDMS)是一种在实验室中广泛用于制造微流控设备的材料,具有快速和可重复的原型制作能力,这要归功于其固有特性(例如,弹性、透气性和透明度)。然而,由于其弹性,PDMS 通道在产生流动时容易受到压力的影响而变形,这会影响实验的稳健性。此外,PDMS 的透气性会导致水的渗透,其多孔结构会吸收油甚至小的疏水分子,因此不适合化学要求高或需要持续一天的实验。在本研究中,我们开发了一种使用环氧树脂的快速且可重复的聚合物基刚性微流控设备制造方法,该方法可以克服 PDMS 通道在结构和化学上的局限性,具有结构和化学稳健性。我们首先优化了一种高分辨率制造协议,通过使用 PDMS 软模具进行环氧树脂铸造,实现了聚合物器件的便捷和可重复原型制作。此外,我们通过跟踪各种流动中的荧光颗粒(~133 μL/min)来比较 PDMS 微通道中的速度变化,以证明聚合物器件的结构稳健性。此外,通过比较荧光疏水性化学物质的吸附和通道壁的渗透蒸发,我们证明了聚合物器件具有出色的耐化学性,适合持续一天的实验。刚性聚合物器件可以促进芯片实验室研究,并能够实现各种应用,例如需要化学或物理苛刻实验的高效液相色谱、厌氧细菌培养和聚合酶链反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab5d/9599855/00e08646b11b/biosensors-12-00838-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验