Briggs Emma, de Kamps Marc, Hamilton Willie, Johnson Owen, McInerney Ciarán D, Neal Richard D
School of Computing, University of Leeds, Leeds LS2 9JT, UK.
Leeds Institute for Data Analytics, University of Leeds, Leeds LS2 9NL, UK.
Cancers (Basel). 2022 Oct 14;14(20):5023. doi: 10.3390/cancers14205023.
Oesophago-gastric cancer is difficult to diagnose in the early stages given its typical non-specific initial manifestation. We hypothesise that machine learning can improve upon the diagnostic performance of current primary care risk-assessment tools by using advanced analytical techniques to exploit the wealth of evidence available in the electronic health record. We used a primary care electronic health record dataset derived from the UK General Practice Research Database (7471 cases; 32,877 controls) and developed five probabilistic machine learning classifiers: Support Vector Machine, Random Forest, Logistic Regression, Naïve Bayes, and Extreme Gradient Boosted Decision Trees. Features included basic demographics, symptoms, and lab test results. The Logistic Regression, Support Vector Machine, and Extreme Gradient Boosted Decision Tree models achieved the highest performance in terms of accuracy and AUROC (0.89 accuracy, 0.87 AUROC), outperforming a current UK oesophago-gastric cancer risk-assessment tool (ogRAT). Machine learning also identified more cancer patients than the ogRAT: 11.0% more with little to no effect on false positives, or up to 25.0% more with a slight increase in false positives (for Logistic Regression, results threshold-dependent). Feature contribution estimates and individual prediction explanations indicated clinical relevance. We conclude that machine learning could improve primary care cancer risk-assessment tools, potentially helping clinicians to identify additional cancer cases earlier. This could, in turn, improve survival outcomes.
鉴于食管癌和胃癌典型的非特异性初始表现,其早期诊断较为困难。我们推测,机器学习可以通过运用先进的分析技术来利用电子健康记录中丰富的证据,从而提高当前初级保健风险评估工具的诊断性能。我们使用了源自英国全科医学研究数据库的初级保健电子健康记录数据集(7471例病例;32877例对照),并开发了五个概率机器学习分类器:支持向量机、随机森林、逻辑回归、朴素贝叶斯和极端梯度提升决策树。特征包括基本人口统计学信息、症状和实验室检查结果。逻辑回归、支持向量机和极端梯度提升决策树模型在准确性和曲线下面积方面表现最佳(准确率0.89,曲线下面积0.87),优于当前英国的食管癌和胃癌风险评估工具(ogRAT)。机器学习识别出的癌症患者也比ogRAT更多:多11.0%,且对假阳性影响很小,或者在假阳性略有增加的情况下多25.0%(对于逻辑回归,结果取决于阈值)。特征贡献估计和个体预测解释显示出临床相关性。我们得出结论,机器学习可以改进初级保健癌症风险评估工具,有可能帮助临床医生更早地识别更多癌症病例。这反过来可能会改善生存结果。