Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
Department of Critical Care, King's College Hospital Denmark Hill, London SE5 9RS, UK.
Medicina (Kaunas). 2022 Oct 6;58(10):1396. doi: 10.3390/medicina58101396.
Background: The hyperventilation test is used in clinical practice for diagnosis and therapeutic purposes; however, in the absence of a standardized protocol, the procedure varies significantly, predisposing tested subjects to risks such as cerebral hypoxia and ischemia. Near-infrared spectroscopy (NIRS), a noninvasive technique performed for cerebral oximetry monitoring, was used in the present study to identify the minimum decrease in the end-tidal CO2 (ETCO2) during hyperventilation necessary to induce changes on NIRS. Materials and Methods: We recruited 46 volunteers with no preexisting medical conditions. Each subject was asked to breathe at a baseline rate (8−14 breaths/min) for 2 min and then to hyperventilate at a double respiratory rate for the next 4 min. The parameters recorded during the procedure were the regional cerebral oxyhemoglobin and deoxyhemoglobin concentrations via NIRS, ETCO2, and the respiratory rate. Results: During hyperventilation, ETCO2 values dropped (31.4 ± 12.2%) vs. baseline in all subjects. Changes in cerebral oximetry were observed only in those subjects (n = 30) who registered a decrease (%) in ETCO2 of 37.58 ± 10.34%, but not in the subjects (n = 16) for which the decrease in ETCO2 was 20.31 ± 5.6%. According to AUC-ROC analysis, a cutoff value of ETCO2 decrease >26% was found to predict changes in oximetry (AUC-ROC = 0.93, p < 0.0001). Seven subjects reported symptoms, such as dizziness, vertigo, and numbness, throughout the procedure. Conclusions: The rise in the respiratory rate alone cannot effectively predict the occurrence of a cerebral vasoconstrictor response induced by hyperventilation, and synchronous ETCO2 and cerebral oximetry monitoring could be used to validate this clinical test. NIRS seems to be a useful tool in predicting vasoconstriction following hyperventilation.
过度通气试验在临床诊断和治疗中被广泛应用,但由于缺乏标准化的方案,该试验的操作流程存在较大差异,可能会使受试对象面临脑缺氧和缺血等风险。近红外光谱(NIRS)技术是一种用于脑氧饱和度监测的非侵入性技术,本研究旨在利用该技术确定在过度通气试验中,使终末 CO2(ETCO2)下降到足以引起 NIRS 变化的最低程度。
我们招募了 46 名无既往病史的志愿者。要求每位受试者先在基线呼吸频率(8-14 次/分)下呼吸 2 分钟,然后以双倍呼吸频率进行接下来的 4 分钟过度通气。在试验过程中记录的参数包括通过 NIRS 记录的区域性脑氧合血红蛋白和脱氧血红蛋白浓度、ETCO2 和呼吸频率。
在所有受试者中,过度通气期间 ETCO2 值下降(31.4±12.2%)。仅在那些 ETCO2 下降(%)为 37.58±10.34%的受试者(n=30)中观察到脑氧合变化,而在那些 ETCO2 下降(%)为 20.31±5.6%的受试者(n=16)中未观察到脑氧合变化。根据 AUC-ROC 分析,发现 ETCO2 下降>26%是预测氧合变化的截断值(AUC-ROC=0.93,p<0.0001)。整个试验过程中,有 7 名受试者报告出现头晕、眩晕和麻木等症状。
单纯增加呼吸频率并不能有效地预测过度通气引起的脑血管收缩反应,同步监测 ETCO2 和脑氧饱和度可以验证该临床试验。NIRS 似乎是预测过度通气后血管收缩的有用工具。