Dharmavaram Sanjay, Wan Xinran, Perotti Luigi E
Department of Mathematics, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA.
Language Technologies Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
Membranes (Basel). 2022 Sep 30;12(10):960. doi: 10.3390/membranes12100960.
A recurring motif in soft matter and biophysics is modeling the mechanics of interacting particles on fluid membranes. One of the main outstanding challenges in these applications is the need to model the strong coupling between the substrate deformation and the particles' positions as the latter freely move on the former. This work presents a thin-shell finite element formulation based on subdivision surfaces to compute equilibrium configurations of a thin fluid shell with embedded particles. We use a variational Lagrangian framework to couple the mechanics of the particles and the substrate without having to resort to ad hoc constraints to anchor the particles to the surface. Unlike established methods for such systems, the particles are allowed to move between elements of the finite element mesh. This is achieved by parametrizing the particle locations on the reference configuration. Using the Helfrich-Canham energy as a model for fluid shells, we present the finite element method's implementation and an efficient search algorithm required to locate particles on the reference mesh. Several analyses with varying numbers of particles are finally presented reproducing symmetries observed in the classic Thomson problem and showcasing the coupling between interacting particles and deformable membranes.
软物质与生物物理学中一个反复出现的主题是对流体膜上相互作用粒子的力学进行建模。这些应用中一个主要的突出挑战是,当粒子在基底上自由移动时,需要对基底变形与粒子位置之间的强耦合进行建模。这项工作提出了一种基于细分曲面的薄壳有限元公式,用于计算带有嵌入粒子的薄流体壳的平衡构型。我们使用变分拉格朗日框架来耦合粒子和基底的力学,而无需借助临时约束将粒子固定在表面上。与此类系统的现有方法不同,粒子可以在有限元网格的单元之间移动。这是通过在参考构型上对粒子位置进行参数化来实现的。以赫尔弗里希 - 卡纳姆能量作为流体壳的模型,我们展示了有限元方法的实现以及在参考网格上定位粒子所需的高效搜索算法。最后给出了对不同数量粒子的若干分析,重现了经典汤姆森问题中观察到的对称性,并展示了相互作用粒子与可变形膜之间的耦合。