Suppr超能文献

浸入式有限元方法及其在生物系统中的应用。

Immersed finite element method and its applications to biological systems.

作者信息

Liu Wing Kam, Liu Yaling, Farrell David, Zhang Lucy, Wang X Sheldon, Fukui Yoshio, Patankar Neelesh, Zhang Yongjie, Bajaj Chandrajit, Lee Junghoon, Hong Juhee, Chen Xinyu, Hsu Huayi

机构信息

Department of Mechanical Engineering, 2145 Sheridan Road, Northwestern University, Evanston, IL 60208, United States.

出版信息

Comput Methods Appl Mech Eng. 2006 Feb 15;195(13-16):1722-1749. doi: 10.1016/j.cma.2005.05.049.

Abstract

This paper summarizes the newly developed immersed finite element method (IFEM) and its applications to the modeling of biological systems. This work was inspired by the pioneering work of Professor T.J.R. Hughes in solving fluid-structure interaction problems. In IFEM, a Lagrangian solid mesh moves on top of a background Eulerian fluid mesh which spans the entire computational domain. Hence, mesh generation is greatly simplified. Moreover, both fluid and solid domains are modeled with the finite element method and the continuity between the fluid and solid subdomains is enforced via the interpolation of the velocities and the distribution of the forces with the reproducing Kernel particle method (RKPM) delta function. The proposed method is used to study the fluid-structure interaction problems encountered in human cardiovascular systems. Currently, the heart modeling is being constructed and the deployment process of an angioplasty stent has been simulated. Some preliminary results on monocyte and platelet deposition are presented. Blood rheology, in particular, the shear-rate dependent de-aggregation of red blood cell (RBC) clusters and the transport of deformable cells, are modeled. Furthermore, IFEM is combined with electrokinetics to study the mechanisms of nano/bio filament assembly for the understanding of cell motility.

摘要

本文总结了新开发的浸入式有限元方法(IFEM)及其在生物系统建模中的应用。这项工作受到了T.J.R.休斯教授在解决流固相互作用问题方面的开创性工作的启发。在IFEM中,拉格朗日固体网格在跨越整个计算域的背景欧拉流体网格上移动。因此,网格生成大大简化。此外,流体和固体域均采用有限元方法建模,流体和固体子域之间的连续性通过用再生核粒子方法(RKPM)δ函数对速度进行插值和对力进行分布来实现。所提出的方法用于研究人体心血管系统中遇到的流固相互作用问题。目前,正在构建心脏模型,并模拟了血管成形术支架的展开过程。给出了关于单核细胞和血小板沉积的一些初步结果。对血液流变学,特别是红细胞(RBC)簇的剪切速率依赖性解聚和可变形细胞的运输进行了建模。此外,IFEM与电动学相结合,以研究纳米/生物细丝组装的机制,从而理解细胞运动。

相似文献

1
Immersed finite element method and its applications to biological systems.浸入式有限元方法及其在生物系统中的应用。
Comput Methods Appl Mech Eng. 2006 Feb 15;195(13-16):1722-1749. doi: 10.1016/j.cma.2005.05.049.
4
A Nodal Immersed Finite Element-Finite Difference Method.一种节点浸入式有限元-有限差分法。
J Comput Phys. 2023 Mar 15;477. doi: 10.1016/j.jcp.2022.111890. Epub 2023 Jan 13.
5
Hybrid finite difference/finite element immersed boundary method.混合有限差分/有限元浸入边界法
Int J Numer Method Biomed Eng. 2017 Dec;33(12). doi: 10.1002/cnm.2888. Epub 2017 Aug 16.
10
Immersed Methods for Fluid-Structure Interaction.流固耦合的浸入式方法
Annu Rev Fluid Mech. 2020;52:421-448. doi: 10.1146/annurev-fluid-010719-060228. Epub 2019 Sep 5.

引用本文的文献

2
Competing signaling pathways controls electrotaxis.相互竞争的信号通路控制电趋性。
iScience. 2025 Apr 2;28(5):112329. doi: 10.1016/j.isci.2025.112329. eCollection 2025 May 16.
6
Biology and medicine in the landscape of quantum advantages.生物学和医学在量子优势的领域中。
J R Soc Interface. 2022 Nov;19(196):20220541. doi: 10.1098/rsif.2022.0541. Epub 2022 Nov 30.
8
Multiscale modeling of hemolysis during microfiltration.微滤过程中溶血的多尺度建模
Microfluid Nanofluidics. 2020 May;24(5). doi: 10.1007/s10404-020-02337-3. Epub 2020 Apr 10.
9
Nuclear plasticity increases susceptibility to damage during confined migration.核可塑性增加了在受限迁移过程中损伤的易感性。
PLoS Comput Biol. 2020 Oct 9;16(10):e1008300. doi: 10.1371/journal.pcbi.1008300. eCollection 2020 Oct.

本文引用的文献

1
2
A continuum model of motility in ameboid cells.变形虫样细胞运动的连续体模型。
Bull Math Biol. 2004 Jan;66(1):167-93. doi: 10.1016/j.bulm.2003.08.007.
4
Reaction complexity of flowing human blood.流动的人体血液的反应复杂性。
Biophys J. 2001 Mar;80(3):1031-2. doi: 10.1016/S0006-3495(01)76083-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验