文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过将增强现实叠加在三维打印模型上实现正常解剖结构的增强可视化。

Enhanced Visualisation of Normal Anatomy with Potential Use of Augmented Reality Superimposed on Three-Dimensional Printed Models.

作者信息

Geerlings-Batt Jade, Tillett Carley, Gupta Ashu, Sun Zhonghua

机构信息

Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6845, Australia.

Curtin HIVE (Hub for Immersive Visualisation and eResearch), Curtin University, Perth, WA 6845, Australia.

出版信息

Micromachines (Basel). 2022 Oct 10;13(10):1701. doi: 10.3390/mi13101701.


DOI:10.3390/mi13101701
PMID:36296054
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9608320/
Abstract

Anatomical knowledge underpins the practice of many healthcare professions. While cadaveric specimens are generally used to demonstrate realistic anatomy, high cost, ethical considerations and limited accessibility can often impede their suitability for use as teaching tools. This study aimed to develop an alternative to traditional teaching methods; a novel teaching tool using augmented reality (AR) and three-dimensional (3D) printed models to accurately demonstrate normal ankle and foot anatomy. An open-source software (3D Slicer) was used to segment a high-resolution magnetic resonance imaging (MRI) dataset of a healthy volunteer ankle and produce virtual bone and musculature objects. Bone and musculature were segmented using seed-planting and interpolation functions, respectively. Virtual models were imported into Unity 3D, which was used to develop user interface and achieve interactability prior to export to the Microsoft HoloLens 2. Three life-size models of bony anatomy were printed in yellow polylactic acid and thermoplastic polyurethane, with another model printed in white Visijet SL Flex with a supporting base attached to its plantar aspect. Interactive user interface with functional toggle switches was developed. Object recognition did not function as intended, with adequate tracking and AR superimposition not achieved. The models accurately demonstrate bony foot and ankle anatomy in relation to the associated musculature. Although segmentation outcomes were sufficient, the process was highly time consuming, with effective object recognition tools relatively inaccessible. This may limit the reproducibility of augmented reality learning tools on a larger scale. Research is required to determine the extent to which this tool accurately demonstrates anatomy and ascertain whether use of this tool improves learning outcomes and is effective for teaching anatomy.

摘要

解剖学知识是许多医疗保健专业实践的基础。虽然通常使用尸体标本来说明逼真的解剖结构,但高成本、伦理考量和有限的可及性常常会妨碍其作为教学工具的适用性。本研究旨在开发一种传统教学方法的替代方案;一种使用增强现实(AR)和三维(3D)打印模型来准确展示正常踝关节和足部解剖结构的新型教学工具。使用开源软件(3D Slicer)对一名健康志愿者踝关节的高分辨率磁共振成像(MRI)数据集进行分割,生成虚拟骨骼和肌肉组织对象。分别使用种子种植和插值函数对骨骼和肌肉组织进行分割。将虚拟模型导入Unity 3D,用于开发用户界面并实现交互性,然后导出到Microsoft HoloLens 2。用黄色聚乳酸和热塑性聚氨酯打印了三个真人大小的骨骼解剖模型,另一个模型用白色Visijet SL Flex打印,足底附有支撑底座。开发了带有功能切换开关的交互式用户界面。对象识别未按预期运行,未实现充分的跟踪和AR叠加。这些模型准确地展示了与相关肌肉组织相关的足部和踝关节骨骼解剖结构。尽管分割结果足够,但该过程非常耗时,有效的对象识别工具相对难以获取。这可能会限制增强现实学习工具在更大规模上的可重复性。需要进行研究以确定该工具准确展示解剖结构的程度,并确定使用该工具是否能提高学习效果以及对解剖学教学是否有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/4612c8542f0c/micromachines-13-01701-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/b5d1bc36821d/micromachines-13-01701-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/937b6be0646e/micromachines-13-01701-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/4332d1011dee/micromachines-13-01701-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/b618c57d46e5/micromachines-13-01701-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/2853749300b8/micromachines-13-01701-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/94c2a7ea0b07/micromachines-13-01701-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/bc5a08157ae8/micromachines-13-01701-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/c2f3146d1c23/micromachines-13-01701-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/6f37680ca7ea/micromachines-13-01701-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/4612c8542f0c/micromachines-13-01701-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/b5d1bc36821d/micromachines-13-01701-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/937b6be0646e/micromachines-13-01701-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/4332d1011dee/micromachines-13-01701-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/b618c57d46e5/micromachines-13-01701-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/2853749300b8/micromachines-13-01701-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/94c2a7ea0b07/micromachines-13-01701-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/bc5a08157ae8/micromachines-13-01701-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/c2f3146d1c23/micromachines-13-01701-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/6f37680ca7ea/micromachines-13-01701-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3974/9608320/4612c8542f0c/micromachines-13-01701-g010.jpg

相似文献

[1]
Enhanced Visualisation of Normal Anatomy with Potential Use of Augmented Reality Superimposed on Three-Dimensional Printed Models.

Micromachines (Basel). 2022-10-10

[2]
Application of HoloLens-based augmented reality and three-dimensional printed anatomical tooth reference models in dental education.

Anat Sci Educ. 2023

[3]
A Novel Three-Dimensional Interactive Virtual Face to Facilitate Facial Anatomy Teaching Using Microsoft HoloLens.

Aesthetic Plast Surg. 2021-6

[4]
An augmented reality tool for learning spatial anatomy on mobile devices.

Clin Anat. 2017-9

[5]
Exploration of temporal bone anatomy using mixed reality (HoloLens): development of a mixed reality anatomy teaching resource prototype.

J Vis Commun Med. 2020-1

[6]
Use of 3D foot and ankle puzzle enhances student understanding of the skeletal anatomy in the early years of medical school.

Surg Radiol Anat. 2024-9

[7]
Augmented Reality to Assist Skin Paddle Harvesting in Osteomyocutaneous Fibular Flap Reconstructive Surgery: A Pilot Evaluation on a 3D-Printed Leg Phantom.

Front Oncol. 2022-1-6

[8]
Navigation and visualisation with HoloLens in endovascular aortic repair.

Innov Surg Sci. 2018-10-4

[9]
The potential of 3D models and augmented reality in teaching cross-sectional radiology.

Med Teach. 2023-10

[10]
Applying 3D surface scanning technology to create photorealistic three-dimensional printed replicas of human anatomy.

Future Sci OA. 2024-12-31

引用本文的文献

[1]
Application of a hybrid virtual-physical teaching model integrating mixed reality and 3D printing in clinical joint orthopedic education.

Front Surg. 2025-8-20

[2]
Use of 3D foot and ankle puzzle enhances student understanding of the skeletal anatomy in the early years of medical school.

Surg Radiol Anat. 2024-9

[3]
Cardiovascular computed tomography in cardiovascular disease: An overview of its applications from diagnosis to prediction.

J Geriatr Cardiol. 2024-5-28

[4]
Incorporating Augmented Reality Into Anatomy Education in a Contemporary Medical School Curriculum.

Cureus. 2024-4-2

本文引用的文献

[1]
Added Value of Computed Tomography Virtual Intravascular Endoscopy in the Evaluation of Coronary Arteries with Stents or Plaques.

Diagnostics (Basel). 2022-2-3

[2]
Scoping review: The use of augmented reality in clinical anatomical education and its assessment tools.

Anat Sci Educ. 2022-7

[3]
Augmented reality in medical education: students' experiences and learning outcomes.

Med Educ Online. 2021-12

[4]
Clinical Value of Virtual Reality versus 3D Printing in Congenital Heart Disease.

Biomolecules. 2021-6-14

[5]
Learning anatomy by virtual reality and augmented reality. A scope review.

Morphologie. 2020-12

[6]
The Effectiveness of Collaborative Augmented Reality in Gross Anatomy Teaching: A Quantitative and Qualitative Pilot Study.

Anat Sci Educ. 2021-9

[7]
Variability and reproducibility in deep learning for medical image segmentation.

Sci Rep. 2020-8-13

[8]
Augmented and Virtual Reality in Anatomical Education - A Systematic Review.

Adv Exp Med Biol. 2020

[9]
Combining Augmented Reality and 3D Printing to Display Patient Models on a Smartphone.

J Vis Exp. 2020-1-2

[10]
Exploration of temporal bone anatomy using mixed reality (HoloLens): development of a mixed reality anatomy teaching resource prototype.

J Vis Commun Med. 2020-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索