Kapellos George E, Eberl Hermann J, Kalogerakis Nicolas, Doyle Patrick S, Paraskeva Christakis A
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Chemical Engineering, University of Patras, 26504 Patras, Greece.
Microorganisms. 2022 Oct 13;10(10):2020. doi: 10.3390/microorganisms10102020.
The interactions between marine bacteria and particulate matter play a pivotal role in the biogeochemical cycles of carbon and associated inorganic elements in the oceans. Eutrophic plumes typically form around nutrient-releasing particles and host intense bacterial activities. However, the potential of bacteria to reshape the nutrient plumes remains largely unexplored. We present a high-resolution numerical analysis for the impacts of nutrient uptake by free-living bacteria on the pattern of dissolution around slow-moving particles. At the single-particle level, the nutrient field is parameterized by the Péclet and Damköhler numbers (0 < Pe < 1000, 0 < Da < 10) that quantify the relative contribution of advection, diffusion and uptake to nutrient transport. In spite of reducing the extent of the nutrient plume in the wake of the particle, bacterial uptake enhances the rates of particle dissolution and nutrient depletion. These effects are amplified when the uptake timescale is shorter than the plume lifetime (Pe/Da < 100, Da > 0.0001), while otherwise they are suppressed by advection or diffusion. Our analysis suggests that the quenching of eutrophic plumes is significant for individual phytoplankton cells, as well as marine aggregates with sizes ranging from 0.1 mm to 10 mm and sinking velocities up to 40 m per day. This microscale process has a large potential impact on microbial growth dynamics and nutrient cycling in marine ecosystems.
海洋细菌与颗粒物之间的相互作用在海洋中碳及相关无机元素的生物地球化学循环中起着关键作用。富营养羽流通常在释放营养物质的颗粒周围形成,并存在强烈的细菌活动。然而,细菌重塑营养羽流的潜力在很大程度上仍未得到探索。我们针对自由生活细菌对缓慢移动颗粒周围溶解模式的营养吸收影响进行了高分辨率数值分析。在单颗粒水平上,营养场由佩克莱数和达姆科勒数(0 < Pe < 1000,0 < Da < 10)参数化,这两个数量化了平流、扩散和吸收对营养物质传输的相对贡献。尽管细菌吸收减少了颗粒尾流中营养羽流的范围,但它提高了颗粒溶解速率和营养物质消耗速率。当吸收时间尺度短于羽流寿命(Pe/Da < 100,Da > 0.0001)时,这些效应会被放大,否则它们会被平流或扩散抑制。我们的分析表明,富营养羽流的淬灭对单个浮游植物细胞以及大小从0.1毫米到10毫米、下沉速度高达每天40米的海洋聚集体来说是显著的。这个微观过程对海洋生态系统中的微生物生长动态和营养物质循环具有巨大的潜在影响。