Stocker Roman, Seymour Justin R, Samadani Azadeh, Hunt Dana E, Polz Martin F
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4209-14. doi: 10.1073/pnas.0709765105. Epub 2008 Mar 12.
Because ocean water is typically resource-poor, bacteria may gain significant growth advantages if they can exploit the ephemeral nutrient patches originating from numerous, small sources. Although this interaction has been proposed to enhance biogeochemical transformation rates in the ocean, it remains questionable whether bacteria are able to efficiently use patches before physical mechanisms dissipate them. Here we show that the rapid chemotactic response of the marine bacterium Pseudoalteromonas haloplanktis substantially enhances its ability to exploit nutrient patches before they dissipate. We investigated two types of patches important in the ocean: nutrient pulses and nutrient plumes, generated for example from lysed algae and sinking organic particles, respectively. We used microfluidic devices to create patches with environmentally realistic dimensions and dynamics. The accumulation of P. haloplanktis in response to a nutrient pulse led to formation of bacterial hot spots within tens of seconds, resulting in a 10-fold higher nutrient exposure for the fastest 20% of the population compared with nonmotile cells. Moreover, the chemotactic response of P. haloplanktis was >10 times faster than the classic chemotaxis model Escherichia coli, leading to twice the nutrient exposure. We demonstrate that such rapid response allows P. haloplanktis to colonize nutrient plumes for realistic particle sinking speeds, with up to a 4-fold nutrient exposure compared with nonmotile cells. These results suggest that chemotactic swimming strategies of marine bacteria in patchy nutrient seascapes exert strong influence on carbon turnover rates by triggering the formation of microscale hot spots of bacterial productivity.
由于海水通常资源匮乏,如果细菌能够利用源自众多小来源的短暂营养斑块,它们可能会获得显著的生长优势。尽管有人提出这种相互作用会提高海洋中的生物地球化学转化速率,但细菌是否能够在物理机制消散营养斑块之前有效地利用它们仍存在疑问。在这里,我们表明海洋细菌嗜盐假交替单胞菌的快速趋化反应大大增强了其在营养斑块消散之前利用它们的能力。我们研究了海洋中两种重要的斑块:营养脉冲和营养羽流,分别例如由裂解的藻类和下沉的有机颗粒产生。我们使用微流控装置来创建具有环境现实尺寸和动态的斑块。嗜盐假交替单胞菌对营养脉冲的积累导致在几十秒内形成细菌热点,与不运动的细胞相比,最快的20%的群体的营养暴露增加了10倍。此外,嗜盐假交替单胞菌的趋化反应比经典趋化模型大肠杆菌快10倍以上,导致营养暴露增加一倍。我们证明,这种快速反应使嗜盐假交替单胞菌能够以实际的颗粒下沉速度在营养羽流中定殖,与不运动的细胞相比,营养暴露增加了4倍。这些结果表明,海洋细菌在斑驳营养海洋景观中的趋化游动策略通过触发细菌生产力的微观热点形成,对碳周转率产生强烈影响。