Suppr超能文献

微观尺度的平流控制着大孔隙聚集体中的微生物生长和氧气消耗。

Microscale advection governs microbial growth and oxygen consumption in macroporous aggregates.

作者信息

Shen Rachel, Borer Benedict, Ciccarese Davide, Salek M Mehdi, Babbin Andrew R

机构信息

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

mSphere. 2024 Apr 23;9(4):e0018524. doi: 10.1128/msphere.00185-24. Epub 2024 Mar 26.

Abstract

Most microbial life on Earth is found in localized microenvironments that collectively exert a crucial role in maintaining ecosystem health and influencing global biogeochemical cycles. In many habitats such as biofilms in aquatic systems, bacterial flocs in activated sludge, periphyton mats, or particles sinking in the ocean, these microenvironments experience sporadic or continuous flow. Depending on their microscale structure, pores and channels through the microenvironments permit localized flow that shifts the relative importance of diffusive and advective mass transport. How this flow alters nutrient supply, facilitates waste removal, drives the emergence of different microbial niches, and impacts the overall function of the microenvironments remains unclear. Here, we quantify how pores through microenvironments that permit flow can elevate nutrient supply to the resident bacterial community using a microfluidic experimental system and gain further insights from coupled population-based and computational fluid dynamics simulations. We find that the microscale structure determines the relative contribution of advection vs diffusion, and even a modest flow through a pore in the range of 10 µm s can increase the carrying capacity of a microenvironment by 10%. Recognizing the fundamental role that microbial hotspots play in the Earth system, developing frameworks that predict how their heterogeneous morphology and potential interstitial flows change microbial function and collectively alter global scale fluxes is critical.IMPORTANCEMicrobial life is a key driver of global biogeochemical cycles. Similar to the distribution of humans on Earth, they are often not homogeneously distributed in nature but occur in dense clusters that resemble microbial cities. Within and around these clusters, diffusion is often assumed as the sole mass-transfer process that dictates nutrient supply and waste removal. In many natural and engineered systems such as biofilms in aquatic environments, aggregates in bioremediation, or flocs in wastewater treatment plants, these clusters are exposed to flow that elevates mass transfer, a process that is often overlooked. In this study, we show that advective fluxes can increase the local growth of bacteria in a single microenvironment by up to 50% and shape their metabolism by disrupting localized anoxia or supplying nutrients at different rates. Collectively, advection-enhanced mass transport may thus regulate important biogeochemical transformations in both natural and engineered environments.

摘要

地球上的大多数微生物生活在局部微环境中,这些微环境共同在维持生态系统健康和影响全球生物地球化学循环方面发挥着关键作用。在许多栖息地,如水生系统中的生物膜、活性污泥中的细菌絮体、周丛生物垫或海洋中下沉的颗粒,这些微环境会经历间歇性或持续性流动。根据其微观结构,穿过微环境的孔隙和通道允许局部流动,从而改变扩散和对流质量传输的相对重要性。这种流动如何改变养分供应、促进废物清除、推动不同微生物生态位的出现以及影响微环境的整体功能仍不清楚。在这里,我们使用微流控实验系统量化了允许流动的微环境孔隙如何提高对常驻细菌群落的养分供应,并从基于种群的耦合模拟和计算流体动力学模拟中获得了进一步的见解。我们发现微观结构决定了对流与扩散的相对贡献,即使是在10 µm/s范围内通过孔隙的适度流动也能使微环境的承载能力提高10%。认识到微生物热点在地球系统中所起的基本作用,开发能够预测其异质形态和潜在间隙流如何改变微生物功能并共同改变全球尺度通量的框架至关重要。

重要性

微生物生命是全球生物地球化学循环的关键驱动因素。与人类在地球上的分布类似,它们在自然界中通常不是均匀分布的,而是以类似微生物城市的密集集群形式出现。在这些集群内部和周围,扩散通常被认为是决定养分供应和废物清除的唯一传质过程。在许多自然和工程系统中,如水生环境中的生物膜、生物修复中的聚集体或污水处理厂中的絮体,这些集群会受到提高传质的流动影响,而这一过程常常被忽视。在本研究中,我们表明对流通量可使单个微环境中细菌的局部生长增加高达50%,并通过破坏局部缺氧或以不同速率供应养分来塑造其代谢。因此,对流增强的质量传输可能共同调节自然和工程环境中的重要生物地球化学转化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1cc/11036798/fde4554cabce/msphere.00185-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验