Leão André Pereira, Bittencourt Cleiton Barroso, Carvalho da Silva Thalliton Luiz, Rodrigues Neto Jorge Cândido, Braga Ítalo de Oliveira, Vieira Letícia Rios, de Aquino Ribeiro José Antônio, Abdelnur Patrícia Verardi, de Sousa Carlos Antônio Ferreira, Souza Júnior Manoel Teixeira
Embrapa Agroenergia, Brasília 70770-901, DF, Brazil.
Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37200-000, MG, Brazil.
Plants (Basel). 2022 Oct 20;11(20):2786. doi: 10.3390/plants11202786.
Drought and salinity are two of the most severe abiotic stresses affecting agriculture worldwide and bear some similarities regarding the responses of plants to them. The first is also known as osmotic stress and shows similarities mainly with the osmotic effect, the first phase of salinity stress. Multi-Omics Integration (MOI) offers a new opportunity for the non-trivial challenge of unraveling the mechanisms behind multigenic traits, such as drought and salinity resistance. The current study carried out a comprehensive, large-scale, single-omics analysis (SOA) and MOI studies on the leaves of young oil palm plants submitted to water deprivation. After performing SOA, 1955 DE enzymes from transcriptomics analysis, 131 DE enzymes from proteomics analysis, and 269 DE metabolites underwent MOI analysis, revealing several pathways affected by this stress, with at least one DE molecule in all three omics platforms used. Moreover, the similarities and dissimilarities in the molecular response of those plants to those two abiotic stresses underwent mapping. Cysteine and methionine metabolism (map00270) was the most affected pathway in all scenarios evaluated. The correlation analysis revealed that 91.55% of those enzymes expressed under both stresses had similar qualitative profiles, corroborating the already known fact that plant responses to drought and salinity show several similarities. At last, the results shed light on some candidate genes for engineering crop species resilient to both abiotic stresses.
干旱和盐度是影响全球农业的两种最严重的非生物胁迫,在植物对它们的反应方面存在一些相似之处。第一种胁迫也被称为渗透胁迫,主要与渗透效应相似,这是盐度胁迫的第一阶段。多组学整合(MOI)为解决多基因性状背后的机制这一重大挑战提供了新机会,例如抗旱性和耐盐性。本研究对遭受水分剥夺的年轻油棕植株的叶片进行了全面、大规模的单组学分析(SOA)和多组学整合研究。在进行单组学分析后,对转录组学分析中的1955种差异表达酶、蛋白质组学分析中的131种差异表达酶和269种差异表达代谢物进行了多组学整合分析,揭示了受这种胁迫影响的几条途径,在所使用的所有三个组学平台中至少有一个差异表达分子。此外,还对这些植物对这两种非生物胁迫的分子反应中的异同进行了绘图分析。在所有评估的情况下,半胱氨酸和蛋氨酸代谢(map00270)是受影响最严重的途径。相关性分析表明,在两种胁迫下表达的那些酶中,91.55%具有相似的定性特征,证实了植物对干旱和盐度的反应存在一些相似之处这一已知事实。最后,研究结果为培育对这两种非生物胁迫均具有抗性的作物品种提供了一些候选基因。