Suppr超能文献

基于自适应数据选择的机器学习算法用于预测部件过时情况。

Adaptive Data Selection-Based Machine Learning Algorithm for Prediction of Component Obsolescence.

作者信息

Moon Kyoung-Sook, Lee Hee Won, Kim Hongjoong

机构信息

Department of Mathematical Finance, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea.

Department of Mathematics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea.

出版信息

Sensors (Basel). 2022 Oct 19;22(20):7982. doi: 10.3390/s22207982.

Abstract

Product obsolescence occurs in the manufacturing industry as new products with better performance or improved cost-effectiveness are developed. A proactive strategy for predicting component obsolescence can reduce manufacturing losses and lead to customer satisfaction. In this study, we propose a machine learning algorithm for a proactive strategy based on an adaptive data selection method to forecast the obsolescence of electronic diodes. Typical machine learning algorithms construct a single model for a dataset. By contrast, the proposed algorithm first determines a mathematical cover of the dataset via unsupervised clustering and subsequently constructs multiple models, each of which is trained with the data in one cover. For each data point in the test dataset, an optimal model is selected for regression. Results of empirical experiments show that the proposed method improves the obsolescence prediction accuracy and accelerates the training procedure. A novelty of this study is that it demonstrates the effectiveness of unsupervised clustering methods for improving supervised regression algorithms.

摘要

随着具有更好性能或更高成本效益的新产品的开发,制造业中会出现产品过时的情况。一种预测零部件过时的积极策略可以减少制造损失并提高客户满意度。在本研究中,我们提出了一种基于自适应数据选择方法的用于积极策略的机器学习算法,以预测电子二极管的过时情况。典型的机器学习算法为一个数据集构建单个模型。相比之下,所提出的算法首先通过无监督聚类确定数据集的数学覆盖,随后构建多个模型,每个模型使用一个覆盖中的数据进行训练。对于测试数据集中的每个数据点,选择一个最优模型进行回归。实证实验结果表明,所提出的方法提高了过时预测的准确性并加速了训练过程。本研究的一个新颖之处在于它证明了无监督聚类方法在改进监督回归算法方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3923/9608088/2bebb45319f5/sensors-22-07982-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验