Suppr超能文献

使用基于聚类的混合机器学习算法预测组件的过时情况。

Forecasting Obsolescence of Components by Using a Clustering-Based Hybrid Machine-Learning Algorithm.

作者信息

Moon Kyoung-Sook, Lee Hee Won, Kim Hee Jean, Kim Hongjoong, Kang Jeehoon, Paik Won Chul

机构信息

Department of Mathematical Finance, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea.

Leo Innovision Ltd., #1906, IT Mirae Tower 33, Digital-ro 9-gil Geumcheon-gu, Seoul 08511, Korea.

出版信息

Sensors (Basel). 2022 Apr 23;22(9):3244. doi: 10.3390/s22093244.

Abstract

Product obsolescence occurs in every production line in the industry as better-performance or cost-effective products become available. A proactive strategy for obsolescence allows firms to prepare for such events and reduces the manufacturing loss, which eventually leads to positive customer satisfaction. We propose a machine learning-based algorithm to forecast the obsolescence date of electronic diodes, which has a limitation on the amount of data available. The proposed algorithm overcomes these limitations in two ways. First, an unsupervised clustering algorithm is applied to group the data based on their similarity and build independent machine-learning models specialized for each group. Second, a hybrid method including several reliable techniques is constructed to improve the prediction accuracy and overcome the limitation of the lack of data. It is empirically confirmed that the prediction accuracy of the obsolescence date for the electrical component data is improved through the proposed clustering-based hybrid method.

摘要

随着性能更优或性价比更高的产品出现,产品过时现象在该行业的每条生产线都会发生。积极主动的过时应对策略能让企业为这类情况做好准备,并减少制造损失,最终带来积极的客户满意度。我们提出一种基于机器学习的算法来预测电子二极管的过时日期,而电子二极管在可用数据量方面存在限制。所提出的算法通过两种方式克服这些限制。首先,应用无监督聚类算法根据数据的相似性对其进行分组,并为每个组构建专门的独立机器学习模型。其次,构建一种包含多种可靠技术的混合方法,以提高预测准确性并克服数据缺乏的限制。通过实证证实,基于聚类的混合方法提高了电气元件数据过时日期的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f95f/9104162/b15065355df4/sensors-22-03244-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验