Suppr超能文献

利用机器学习预测慢性阻塞性肺疾病加重住院后再入院的可能性和原因。

Using Machine Learning to Predict Likelihood and Cause of Readmission After Hospitalization for Chronic Obstructive Pulmonary Disease Exacerbation.

机构信息

Pritzker School of Medicine, University of Chicago, Chicago, IL, USA.

Department of Medicine, Section of Pulmonary/Critical Care, University of Chicago, Chicago, IL, USA.

出版信息

Int J Chron Obstruct Pulmon Dis. 2022 Oct 20;17:2701-2709. doi: 10.2147/COPD.S379700. eCollection 2022.

Abstract

BACKGROUND

Chronic obstructive pulmonary disease (COPD) is a leading cause of hospital readmissions. Few existing tools use electronic health record (EHR) data to forecast patients' readmission risk during index hospitalizations.

OBJECTIVE

We used machine learning and in-hospital data to model 90-day risk for and cause of readmission among inpatients with acute exacerbations of COPD (AE-COPD).

DESIGN

Retrospective cohort study.

PARTICIPANTS

Adult patients admitted for AE-COPD at the University of Chicago Medicine between November 7, 2008 and December 31, 2018 meeting International Classification of Diseases (ICD)-9 or -10 criteria consistent with AE-COPD were included.

METHODS

Random forest models were fit to predict readmission risk and respiratory-related readmission cause. Predictor variables included demographics, comorbidities, and EHR data from patients' index hospital stays. Models were derived on 70% of observations and validated on a 30% holdout set. Performance of the readmission risk model was compared to that of the HOSPITAL score.

RESULTS

Among 3238 patients admitted for AE-COPD, 1103 patients were readmitted within 90 days. Of the readmission causes, 61% (n = 672) were respiratory-related and COPD (n = 452) was the most common. Our readmission risk model had a significantly higher area under the receiver operating characteristic curve (AUROC) (0.69 [0.66, 0.73]) compared to the HOSPITAL score (0.63 [0.59, 0.67]; = 0.002). The respiratory-related readmission cause model had an AUROC of 0.73 [0.68, 0.79].

CONCLUSION

Our models improve on current tools by predicting 90-day readmission risk and cause at the time of discharge from index admissions for AE-COPD. These models could be used to identify patients at higher risk of readmission and direct tailored post-discharge transition of care interventions that lower readmission risk.

摘要

背景

慢性阻塞性肺疾病(COPD)是导致医院再入院的主要原因。现有的少数工具利用电子健康记录(EHR)数据来预测患者在住院期间的再入院风险。

目的

我们利用机器学习和住院数据,为因 COPD 急性加重(AE-COPD)住院的患者建立 90 天内再入院风险和再入院原因的模型。

设计

回顾性队列研究。

参与者

2008 年 11 月 7 日至 2018 年 12 月 31 日期间,因符合 AE-COPD 的国际疾病分类(ICD)第 9 或 10 版标准而在芝加哥大学医学中心住院治疗的 AE-COPD 成年患者。

方法

随机森林模型用于预测再入院风险和与呼吸系统相关的再入院原因。预测变量包括患者住院期间的人口统计学、合并症和 EHR 数据。模型在 70%的观察值上进行拟合,在 30%的保留集上进行验证。比较了再入院风险模型与 HOSPITAL 评分的性能。

结果

在 3238 名因 AE-COPD 住院的患者中,有 1103 名在 90 天内再次入院。再入院原因中,61%(n=672)与呼吸系统相关,最常见的原因是 COPD(n=452)。我们的再入院风险模型的接收者操作特征曲线下面积(AUROC)显著高于 HOSPITAL 评分(0.69[0.66,0.73]与 0.63[0.59,0.67];=0.002)。与呼吸系统相关的再入院原因模型的 AUROC 为 0.73[0.68,0.79]。

结论

我们的模型通过预测 AE-COPD 指数住院患者出院时的 90 天再入院风险和原因,改进了现有的工具。这些模型可用于识别再入院风险较高的患者,并为其提供有针对性的出院后过渡护理干预措施,以降低再入院风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cd8/9590342/3f1cf3173fe6/COPD-17-2701-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验