Suppr超能文献

用于慢性阻塞性肺疾病再入院预测模型开发的图表回顾与管理数据比较

Comparison of Chart Review and Administrative Data in Developing Predictive Models for Readmissions in Chronic Obstructive Pulmonary Disease.

作者信息

Chokkara Sukarn, Hermsen Michael G, Bonomo Matthew, Kaskovich Samuel, Hemmrich Maximilian J, Carey Kyle A, Venable Laura Ruth, Rojas Juan C, Churpek Matthew M, Press Valerie G

机构信息

Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States.

Internal Medicine Residency Program University of Wisconsin, Madison, Wisconsin, United States.

出版信息

Chronic Obstr Pulm Dis. 2025 Mar 27;12(2):175-183. doi: 10.15326/jcopdf.2024.0542.

Abstract

This study aimed to evaluate the performance of machine learning models for predicting readmission of patients with chronic obstructive pulmonary disease (COPD) based on administrative data and chart review data. The study analyzed 4327 patient encounters from the University of Chicago Medicine to assess the risk of readmission within 90 days after an acute exacerbation of COPD. Two random forest prediction models were compared. One was derived from chart review data, while the other was derived using administrative data. The data were randomly partitioned into training and internal validation sets using a 70% to 30% split. The 2 models had comparable accuracy (administrative data area under the curve [AUC]=0.67, chart review AUC=0.64). These results suggest that despite its limitations in precisely identifying COPD admissions, administrative data may be useful for developing effective predictive tools and offer a less labor-intensive alternative to chart reviews.

摘要

本研究旨在评估基于管理数据和病历审查数据的机器学习模型预测慢性阻塞性肺疾病(COPD)患者再入院情况的性能。该研究分析了来自芝加哥大学医学中心的4327例患者就诊情况,以评估COPD急性加重后90天内再入院的风险。比较了两种随机森林预测模型。一种来自病历审查数据,另一种使用管理数据。数据以70%对30%的比例随机划分为训练集和内部验证集。这两种模型具有相当的准确性(管理数据曲线下面积[AUC]=0.67,病历审查AUC=0.64)。这些结果表明,尽管管理数据在精确识别COPD入院方面存在局限性,但它可能有助于开发有效的预测工具,并且提供了一种比病历审查劳动强度更低的替代方法。

相似文献

5

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验