Suppr超能文献

基于生物信息学分析的脂肪酸代谢相关lncRNAs在肺腺癌中的预后价值及其与肿瘤微环境的相关性

Prognostic value of lncRNAs related to fatty acid metabolism in lung adenocarcinoma and their correlation with tumor microenvironment based on bioinformatics analysis.

作者信息

Pan Ya-Qiang, Xiao Ying, Long Tao, Liu Chao, Gao Wen-Hui, Sun Yang-Yong, Liu Chang, Shi Yi-Jun, Li Shuang, Shao Ai-Zhong

机构信息

Department of Cardiothoracic Surgery, People's Hospital Affiliated to Jiangsu University, Zhenjiang, China.

Department of Oncology, Hospital Affiliated to Hebei University of Engineering, Handan, China.

出版信息

Front Oncol. 2022 Oct 10;12:1022097. doi: 10.3389/fonc.2022.1022097. eCollection 2022.

Abstract

BACKGROUND

As a key regulator of metabolic pathways, long non-coding RNA (lncRNA) has received much attention for its relationship with reprogrammed fatty acid metabolism (FAM). This study aimed to investigate the role of the FAM-related lncRNAs in the prognostic management of patients with lung adenocarcinoma (LUAD) using bioinformatics analysis techniques.

METHODS

We obtained LUAD-related transcriptomic data and clinical information from The Cancer Genome Atlas (TCGA) database. The lncRNA risk models associated with FMA were constructed by single-sample gene set enrichment analysis (ssGSEA), weighted gene co-expression network (WGCNA), differential expression analysis, overlap analysis, and Cox regression analysis. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curves were utilized to assess the predictive validity of the risk model. Gene set variation analysis (GSVA) revealed molecular mechanisms associated with the risk model. ssGSEA and microenvironment cell populations-counter (MCP-counter) demonstrated the immune landscape of LUAD patients. The relationships between lncRNAs, miRNAs, and mRNAs were predicted by using LncBase v.2 and miRTarBase. The lncRNA-miRNA-mRNA regulatory network was visualized with Cytoscape v3.4.0. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed using DAVID v6.8. Quantitative real-time fluorescence PCR (qRT-PCR) was performed to verify the expression levels of the prognostic lncRNAs.

RESULTS

We identified 249 differentially expressed FMA-related lncRNAs in TCGA-LUAD, six of which were used to construct a risk model with appreciable predictive power. GSVA results suggested that the risk model may be involved in regulating fatty acid synthesis/metabolism, gene repair, and immune/inflammatory responses in the LUAD process. Immune landscape analysis demonstrated a lower abundance of immune cells in the high-risk group of patients associated with poor prognosis. Moreover, we predicted 279 competing endogenous RNA (ceRNA) mechanisms for 6 prognostic lncRNAs with 39 miRNAs and 201 mRNAs. Functional enrichment analysis indicated that the ceRNA network may be involved in the process of LUAD by participating in genomic transcription, influencing the cell cycle, and regulating tissue and organogenesis. experiments showed that prognostic lncRNA CTA-384D8.35, lncRNA RP5-1059L7.1, and lncRNA Z83851.4 were significantly upregulated in LUAD primary tumor tissues, while lncRNA RP11-401P9.4, lncRNA CTA-384D8.35, and lncRNA RP11-259K15.2 were expressed at higher levels in paraneoplastic tissues.

CONCLUSION

In summary, the prognostic factors identified in this study can be used as potential biomarkers for clinical applications. ceRNA network construction provides a new vision for the study of LUAD pathogenesis.

摘要

背景

作为代谢途径的关键调节因子,长链非编码RNA(lncRNA)因其与重编程脂肪酸代谢(FAM)的关系而备受关注。本研究旨在利用生物信息学分析技术探讨FAM相关lncRNAs在肺腺癌(LUAD)患者预后管理中的作用。

方法

我们从癌症基因组图谱(TCGA)数据库中获取了LUAD相关的转录组数据和临床信息。通过单样本基因集富集分析(ssGSEA)、加权基因共表达网络(WGCNA)、差异表达分析、重叠分析和Cox回归分析构建了与FMA相关的lncRNA风险模型。采用Kaplan-Meier(K-M)曲线和受试者工作特征(ROC)曲线评估风险模型的预测有效性。基因集变异分析(GSVA)揭示了与风险模型相关的分子机制。ssGSEA和微环境细胞群体计数器(MCP-counter)展示了LUAD患者的免疫格局。利用LncBase v.2和miRTarBase预测lncRNAs、miRNAs和mRNAs之间的关系。使用Cytoscape v3.4.0可视化lncRNA-miRNA-mRNA调控网络。使用DAVID v6.8进行基因本体(GO)和京都基因与基因组百科全书(KEGG)通路富集分析。进行定量实时荧光PCR(qRT-PCR)以验证预后lncRNAs的表达水平。

结果

我们在TCGA-LUAD中鉴定出249个差异表达的FMA相关lncRNAs,其中6个用于构建具有显著预测能力的风险模型。GSVA结果表明,风险模型可能参与调节LUAD过程中的脂肪酸合成/代谢、基因修复以及免疫/炎症反应。免疫格局分析表明,预后不良的高危组患者体内免疫细胞丰度较低。此外,我们预测了6个预后lncRNAs与39个miRNAs和201个mRNAs之间的279种竞争性内源RNA(ceRNA)机制。功能富集分析表明,ceRNA网络可能通过参与基因组转录、影响细胞周期以及调节组织和器官发生而参与LUAD的发生过程。实验表明,预后lncRNA CTA-384D8.35、lncRNA RP5-1059L7.1和lncRNA Z83851.4在LUAD原发肿瘤组织中显著上调,而lncRNA RP11-401P9.4、lncRNA CTA-384D8.35和lncRNA RP11-259K15.2在癌旁组织中表达水平较高。

结论

总之,本研究中确定的预后因素可作为临床应用的潜在生物标志物。ceRNA网络构建为LUAD发病机制的研究提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7735/9590110/f2e0477eff49/fonc-12-1022097-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验