Suppr超能文献

种族与人脸识别统计:类型、生理特征与系谱的产生。

Race and statistics in facial recognition: Producing types, physical attributes, and genealogies.

机构信息

Utrecht University, The Netherlands.

出版信息

Soc Stud Sci. 2023 Dec;53(6):916-937. doi: 10.1177/03063127221127666. Epub 2022 Oct 27.

Abstract

Principal component analysis (PCA) is a common statistical procedure. In forensics, it is used in facial recognition technologies and composite sketching systems. PCA is especially helpful in contexts with high facial diversity, which is often translated as racial diversity. In these settings, researchers use PCA to define a 'normal face' and organize the rest of the available facial diversity based on their resemblance to or difference from that norm. In this way, the use of PCA introduces an 'ontology of the normal' in which expectations about how a normal face should look are corroborated by statistical calculations of normality. I argue that the use of PCA can lead to a statistical reification of racial stereotypes that informs recognition practices. I discuss current and historical cases in which PCA is used: one of face perception theorization ('face space theory') and two of technology development (the 'eigenfaces' facial recognition algorithm and the 'EvoFIT' composite sketching system). In each, PCA aligns facial normality with racial expectations, and instrumentalizes race in specific ways: as a type, physical attribute, or genealogy. This analysis of PCA does two things. First, it opens the black box of facial recognition to uncover how stereotypes and intuitions about normality become part of theories and technologies of facial recognition. Second, it explains why racial categorizations remain central in contemporary identification technologies and other forensic practices.

摘要

主成分分析(PCA)是一种常见的统计程序。在法医学中,它被用于面部识别技术和组合素描系统。PCA 在具有高度面部多样性的情况下特别有用,这通常被翻译为种族多样性。在这些环境中,研究人员使用 PCA 来定义“正常面孔”,并根据与该标准的相似程度或差异,对其余可用的面部多样性进行组织。通过这种方式,PCA 的使用引入了“正常的本体论”,其中关于正常面孔应该是什么样子的期望通过对正常性的统计计算得到证实。我认为,PCA 的使用可能导致种族刻板印象的统计具体化,从而影响识别实践。我讨论了当前和历史上使用 PCA 的案例:一个是面部感知理论化(“面孔空间理论”),另一个是技术开发(“特征脸”面部识别算法和“EvoFIT”组合素描系统)。在每种情况下,PCA 都将面部正常性与种族期望联系起来,并以特定的方式利用种族:作为一种类型、物理属性或血统。对 PCA 的这种分析有两个作用。首先,它揭示了面部识别的黑箱,揭示了关于正常性的刻板印象和直觉如何成为面部识别理论和技术的一部分。其次,它解释了为什么种族分类在当代识别技术和其他法医学实践中仍然是核心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac70/10696907/802d85d0a4ff/10.1177_03063127221127666-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验