Suppr超能文献

我们得到了地面真值的算法:数字图像处理中的参考数据库设计。

We get the algorithms of our ground truths: Designing referential databases in digital image processing.

机构信息

Institut des Sciences Sociales, Université de Lausanne, Lausanne, Switzerland.

出版信息

Soc Stud Sci. 2017 Dec;47(6):811-840. doi: 10.1177/0306312717730428. Epub 2017 Sep 26.

Abstract

This article documents the practical efforts of a group of scientists designing an image-processing algorithm for saliency detection. By following the actors of this computer science project, the article shows that the problems often considered to be the starting points of computational models are in fact provisional results of time-consuming, collective and highly material processes that engage habits, desires, skills and values. In the project being studied, problematization processes lead to the constitution of referential databases called 'ground truths' that enable both the effective shaping of algorithms and the evaluation of their performances. Working as important common touchstones for research communities in image processing, the ground truths are inherited from prior problematization processes and may be imparted to subsequent ones. The ethnographic results of this study suggest two complementary analytical perspectives on algorithms: (1) an 'axiomatic' perspective that understands algorithms as sets of instructions designed to solve given problems computationally in the best possible way, and (2) a 'problem-oriented' perspective that understands algorithms as sets of instructions designed to computationally retrieve outputs designed and designated during specific problematization processes. If the axiomatic perspective on algorithms puts the emphasis on the numerical transformations of inputs into outputs, the problem-oriented perspective puts the emphasis on the definition of both inputs and outputs.

摘要

本文记录了一组科学家设计用于显著检测的图像处理算法的实际努力。通过跟踪计算机科学项目的参与者,本文表明,通常被认为是计算模型起点的问题实际上是耗时、集体和高度物质化的过程的临时结果,这些过程涉及习惯、欲望、技能和价值观。在所研究的项目中,问题化过程导致了参考数据库的构成,这些数据库被称为“ground truths”,它们既可以有效地塑造算法,又可以评估它们的性能。作为图像处理研究社区的重要共同基准,ground truths 是从先前的问题化过程中继承而来的,并可能被传递给后续的过程。这项研究的民族志结果为算法提供了两种互补的分析视角:(1)一种“公设”视角,将算法理解为一组旨在以最佳方式计算解决给定问题的指令集;(2)一种“面向问题”的视角,将算法理解为一组旨在计算检索在特定问题化过程中设计和指定的输出的指令集。如果算法的公设视角强调将输入的数值转换为输出,那么面向问题的视角则强调输入和输出的定义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131e/5697567/0365433e5cf1/10.1177_0306312717730428-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验