Suppr超能文献

全身免疫接种可诱导 CD8 T 细胞并重塑肿瘤微环境。

Systemic vaccination induces CD8 T cells and remodels the tumor microenvironment.

机构信息

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Genentech, South San Francisco, CA 94080, USA.

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Cell. 2022 Nov 10;185(23):4317-4332.e15. doi: 10.1016/j.cell.2022.10.006. Epub 2022 Oct 26.

Abstract

Therapeutic cancer vaccines are designed to increase tumor-specific T cell immunity. However, suppressive mechanisms within the tumor microenvironment (TME) may limit T cell function. Here, we assessed how the route of vaccination alters intratumoral myeloid cells. Using a self-assembling nanoparticle vaccine that links tumor antigen peptides to a Toll-like receptor 7/8 agonist (SNP-7/8a), we treated tumor-bearing mice subcutaneously (SNP-SC) or intravenously (SNP-IV). Both routes generated antigen-specific CD8 T cells that infiltrated tumors. However, only SNP-IV mediated tumor regression, dependent on systemic type I interferon at the time of boost. Single-cell RNA-sequencing revealed that intratumoral monocytes expressing an immunoregulatory gene signature (Chil3, Anxa2, Wfdc17) were reduced after SNP-IV boost. In humans, the Chil3 monocyte gene signature is enriched in CD16 monocytes and associated with worse outcomes. Our results show that the generation of tumor-specific CD8 T cells combined with remodeling of the TME is a promising approach for tumor immunotherapy.

摘要

治疗性癌症疫苗旨在增强肿瘤特异性 T 细胞免疫。然而,肿瘤微环境(TME)中的抑制机制可能会限制 T 细胞的功能。在这里,我们评估了接种疫苗的途径如何改变肿瘤内髓样细胞。我们使用一种自组装纳米颗粒疫苗,将肿瘤抗原肽与 Toll 样受体 7/8 激动剂(SNP-7/8a)连接,对荷瘤小鼠进行皮下(SNP-SC)或静脉内(SNP-IV)接种。两种途径都产生了浸润肿瘤的抗原特异性 CD8 T 细胞。然而,只有 SNP-IV 介导的肿瘤消退依赖于增强时的全身 I 型干扰素。单细胞 RNA 测序显示,SNP-IV 增强后,表达免疫调节基因特征(Chil3、Anxa2、Wfdc17)的肿瘤内单核细胞减少。在人类中,Chil3 单核细胞基因特征在 CD16 单核细胞中富集,并与更差的结果相关。我们的结果表明,肿瘤特异性 CD8 T 细胞的产生与 TME 的重塑相结合是肿瘤免疫治疗的一种有前途的方法。

相似文献

1
Systemic vaccination induces CD8 T cells and remodels the tumor microenvironment.
Cell. 2022 Nov 10;185(23):4317-4332.e15. doi: 10.1016/j.cell.2022.10.006. Epub 2022 Oct 26.
2
Intravenous nanoparticle vaccination generates stem-like TCF1 neoantigen-specific CD8 T cells.
Nat Immunol. 2021 Jan;22(1):41-52. doi: 10.1038/s41590-020-00810-3. Epub 2020 Nov 2.
3
Intravenous heterologous prime-boost vaccination activates innate and adaptive immunity to promote tumor regression.
Cell Rep. 2023 Jun 27;42(6):112599. doi: 10.1016/j.celrep.2023.112599. Epub 2023 Jun 7.
4
5
Recombinant promotes tumor rejection by CD8 T cell-dependent remodeling of the tumor microenvironment.
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):8179-8184. doi: 10.1073/pnas.1801910115. Epub 2018 Jul 23.

引用本文的文献

1
Harnessing an integrated glyco-nanovaccine technology for enhanced cancer immunotherapy.
Commun Med (Lond). 2025 Aug 29;5(1):378. doi: 10.1038/s43856-025-01102-3.
3
Molecular Subtyping of Hepatocellular Carcinoma via Lysosome-Related Genes for Prognosis and Therapy Prediction.
Int J Gen Med. 2025 Jul 16;18:3933-3950. doi: 10.2147/IJGM.S490019. eCollection 2025.
4
Improvement of the Anticancer Efficacy of PD-1/PD-L1 Blockade: Advances in Molecular Mechanisms and Therapeutic Strategies.
MedComm (2020). 2025 Jul 15;6(8):e70274. doi: 10.1002/mco2.70274. eCollection 2025 Aug.
5
Vaccines in cancer treatment and prevention: the time is now.
J Clin Invest. 2025 Jul 1;135(13). doi: 10.1172/JCI195673.
6
RXRG as a Novel Biomarker and its Correlation With Immune Infiltration in Thyroid Carcinoma.
In Vivo. 2025 Jul-Aug;39(4):2013-2034. doi: 10.21873/invivo.13998.
9
Clinical Translation Challenges and Strategies for Tumour Vaccines Considering Multiple Delivery Routes.
Vaccines (Basel). 2025 Apr 27;13(5):469. doi: 10.3390/vaccines13050469.

本文引用的文献

1
Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting.
Front Oncol. 2021 Dec 20;11:788365. doi: 10.3389/fonc.2021.788365. eCollection 2021.
2
Discovering dominant tumor immune archetypes in a pan-cancer census.
Cell. 2022 Jan 6;185(1):184-203.e19. doi: 10.1016/j.cell.2021.12.004. Epub 2021 Dec 27.
3
4
Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment.
Cell. 2021 Oct 14;184(21):5338-5356.e21. doi: 10.1016/j.cell.2021.09.019. Epub 2021 Oct 7.
5
A single-cell and spatially resolved atlas of human breast cancers.
Nat Genet. 2021 Sep;53(9):1334-1347. doi: 10.1038/s41588-021-00911-1. Epub 2021 Sep 6.
6
Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease.
Immunity. 2021 Aug 10;54(8):1883-1900.e5. doi: 10.1016/j.immuni.2021.07.007. Epub 2021 Jul 30.
7
Immunoregulatory Monocyte Subset Promotes Metastasis Associated With Therapeutic Intervention for Primary Tumor.
Front Immunol. 2021 Jun 7;12:663115. doi: 10.3389/fimmu.2021.663115. eCollection 2021.
8
Integrated analysis of multimodal single-cell data.
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
9
MDSC: Markers, development, states, and unaddressed complexity.
Immunity. 2021 May 11;54(5):875-884. doi: 10.1016/j.immuni.2021.04.004.
10
Therapeutic cancer vaccines.
Nat Rev Cancer. 2021 Jun;21(6):360-378. doi: 10.1038/s41568-021-00346-0. Epub 2021 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验