文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用 TLR2/3 激动剂 L-pampo 进行肿瘤内免疫治疗可诱导强烈的抗肿瘤免疫反应,并增强免疫检查点阻断。

Intratumoral immunotherapy using a TLR2/3 agonist, L-pampo, induces robust antitumor immune responses and enhances immune checkpoint blockade.

机构信息

Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of).

Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of).

出版信息

J Immunother Cancer. 2022 Jun;10(6). doi: 10.1136/jitc-2022-004799.


DOI:10.1136/jitc-2022-004799
PMID:35764365
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9240943/
Abstract

BACKGROUND: Toll-like receptors (TLRs) are critical innate immune sensors that elicit antitumor immune responses in cancer immunotherapy. Although a few TLR agonists have been approved for the treatment of patients with early-stage superficial cancers, their therapeutic efficacy is limited in patient with advanced invasive cancers. Here, we identified the therapeutic role of a TLR2/3 agonist, L-pampo (LP), which promotes antitumor immunity and enhances the immune checkpoint blockade. METHODS: We generated LP by combining a TLR2 agonist, Pam3CSK4, with a TLR3 agonist, Poly (I:C). Immune responses to stimulation with various TLR agonists were compared. Tumor-bearing mice were intratumorally treated with LP, and their tumor sizes were measured. The antitumor effects of LP treatment were determined using flow cytometry, multiplexed imaging, and NanoString nCounter immune profiling. The immunotherapeutic potential of LP in combination with α-programmed cell death protein-1 (PD-1) or α-cytotoxic T-lymphocytes-associated protein 4 (CTLA-4) was evaluated in syngeneic MC38 colon cancer and B16F10 melanoma. RESULTS: The LP treatment induced a potent activation of T helper 1 (Th1) and 2 (Th2)-mediated immunity, tumor cell apoptosis, and immunogenic tumor cell death. Intratumoral LP treatment effectively inhibited tumor progression by activating tumor-specific T cell immunity. LP-induced immune responses were mediated by CD8 T cells and interferon-γ, but not by CD4 T cells and CD25 T cells. LP simultaneously activated TLR2 and TLR3 signaling, thereby extensively changing the immune-related gene signatures within the tumor microenvironment (TME). Moreover, intratumoral LP treatment led to systemic abscopal antitumor effects in non-injected distant tumors. Notably, LP treatment combined with ɑPD-1 and ɑCTLA-4 further enhanced the efficacy of monotherapy, resulting in complete tumor regression and prolonged overall survival. Furthermore, LP-based combination immunotherapy elicited durable antitumor immunity with tumor-specific immune memory in colon cancer and melanoma. CONCLUSIONS: Our study demonstrated that intratumoral LP treatment improves the innate and adaptive antitumor immunity within the TME and enhances the efficacy of αPD-1 and αCTLA-4 immune checkpoint blockade.

摘要

背景:Toll 样受体 (TLRs) 是关键的先天免疫传感器,可在癌症免疫治疗中引发抗肿瘤免疫反应。虽然有几种 TLR 激动剂已被批准用于治疗早期局限性癌症患者,但它们在晚期侵袭性癌症患者中的治疗效果有限。在这里,我们确定了 TLR2/3 激动剂 L-pampo(LP)的治疗作用,它可促进抗肿瘤免疫并增强免疫检查点阻断。

方法:我们通过将 TLR2 激动剂 Pam3CSK4 与 TLR3 激动剂 Poly(I:C)结合来生成 LP。比较了对各种 TLR 激动剂刺激的免疫反应。用 LP 对荷瘤小鼠进行肿瘤内治疗,并测量其肿瘤大小。通过流式细胞术、多重成像和 NanoString nCounter 免疫分析对 LP 治疗的抗肿瘤作用进行了测定。在同源 MC38 结肠癌细胞和 B16F10 黑色素瘤中评估了 LP 与 α-程序性细胞死亡蛋白 1(PD-1)或 α-细胞毒性 T 淋巴细胞相关蛋白 4(CTLA-4)联合的免疫治疗潜力。

结果:LP 治疗可强烈激活 Th1 和 Th2 介导的免疫、肿瘤细胞凋亡和免疫原性肿瘤细胞死亡。肿瘤内 LP 治疗通过激活肿瘤特异性 T 细胞免疫有效抑制肿瘤进展。LP 诱导的免疫反应是由 CD8 T 细胞和干扰素-γ介导的,而不是由 CD4 T 细胞和 CD25 T 细胞介导的。LP 同时激活 TLR2 和 TLR3 信号通路,从而广泛改变肿瘤微环境(TME)中的免疫相关基因特征。此外,肿瘤内 LP 治疗导致非注射远处肿瘤的系统抗肿瘤作用。值得注意的是,LP 治疗联合 αPD-1 和 αCTLA-4 进一步增强了单药治疗的疗效,导致完全肿瘤消退和总生存期延长。此外,基于 LP 的联合免疫疗法在结肠直肠癌和黑色素瘤中引发了具有肿瘤特异性免疫记忆的持久抗肿瘤免疫。

结论:我们的研究表明,肿瘤内 LP 治疗可改善 TME 中的先天和适应性抗肿瘤免疫,并增强 αPD-1 和 αCTLA-4 免疫检查点阻断的疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e27b/9240943/896383ec5690/jitc-2022-004799f06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e27b/9240943/a4e6e06f5eaf/jitc-2022-004799f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e27b/9240943/e3d9b9d4301c/jitc-2022-004799f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e27b/9240943/639a02cdfeb1/jitc-2022-004799f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e27b/9240943/d624b5dca197/jitc-2022-004799f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e27b/9240943/e3fa499ddb55/jitc-2022-004799f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e27b/9240943/896383ec5690/jitc-2022-004799f06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e27b/9240943/a4e6e06f5eaf/jitc-2022-004799f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e27b/9240943/e3d9b9d4301c/jitc-2022-004799f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e27b/9240943/639a02cdfeb1/jitc-2022-004799f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e27b/9240943/d624b5dca197/jitc-2022-004799f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e27b/9240943/e3fa499ddb55/jitc-2022-004799f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e27b/9240943/896383ec5690/jitc-2022-004799f06.jpg

相似文献

[1]
Intratumoral immunotherapy using a TLR2/3 agonist, L-pampo, induces robust antitumor immune responses and enhances immune checkpoint blockade.

J Immunother Cancer. 2022-6

[2]
In situ immunogenic clearance induced by a combination of photodynamic therapy and rho-kinase inhibition sensitizes immune checkpoint blockade response to elicit systemic antitumor immunity against intraocular melanoma and its metastasis.

J Immunother Cancer. 2021-1

[3]
Tumor Microenvironment Remodeling by Intratumoral Oncolytic Vaccinia Virus Enhances the Efficacy of Immune-Checkpoint Blockade.

Clin Cancer Res. 2018-12-11

[4]
Combining toll-like receptor agonists with immune checkpoint blockade affects antitumor vaccine efficacy.

J Immunother Cancer. 2024-5-3

[5]
Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies.

J Immunother Cancer. 2019-9-11

[6]
B Cells Are Required to Generate Optimal Anti-Melanoma Immunity in Response to Checkpoint Blockade.

Front Immunol. 2022

[7]
Chemoradiation triggers antitumor Th1 and tissue resident memory-polarized immune responses to improve immune checkpoint inhibitors therapy.

J Immunother Cancer. 2021-7

[8]
In situ vaccination with cowpea mosaic virus elicits systemic antitumor immunity and potentiates immune checkpoint blockade.

J Immunother Cancer. 2022-12

[9]
Inhibition of tumor intrinsic BANF1 activates antitumor immune responses via cGAS-STING and enhances the efficacy of PD-1 blockade.

J Immunother Cancer. 2023-8

[10]
Combining bempegaldesleukin (CD122-preferential IL-2 pathway agonist) and NKTR-262 (TLR7/8 agonist) improves systemic antitumor CD8 T cell cytotoxicity over BEMPEG+RT.

J Immunother Cancer. 2022-4

引用本文的文献

[1]
Intratumoral immunotherapy prior to cancer surgery, a promising therapeutic approach.

Front Immunol. 2025-6-18

[2]
Activated platelets stimulate effector CD8+ T cells to enhance HNSCC immunotherapy efficacy.

Discov Oncol. 2025-5-14

[3]
Dendrimer Conjugates with PD-L1-Binding Peptides Enhance In Vivo Antitumor Immune Response.

Adv Healthc Mater. 2025-8

[4]
Intratumoral delivery of mRNA encoding the endogenous TLR2/6 agonist UNE-C1 induces immunogenic cell death and enhances antitumor activity.

Front Immunol. 2024-11-28

[5]
Cellular mechanisms of combining innate immunity activation with PD-1/PD-L1 blockade in treatment of colorectal cancer.

Mol Cancer. 2024-11-12

[6]
Therapeutic Immunomodulation of Tumor-Lymphatic Crosstalk via Intratumoral Immunotherapy.

Mol Pharm. 2024-12-2

[7]
Oral reovirus reshapes the gut microbiome and enhances antitumor immunity in colon cancer.

Nat Commun. 2024-10-22

[8]
Lipo-pam™ adjuvanted herpes zoster vaccine induces potent gE-specific cellular and humoral immune responses.

NPJ Vaccines. 2024-8-17

[9]
Radiotherapy Combined with Intralesional Immunostimulatory Agents for Soft Tissue Sarcomas.

Semin Radiat Oncol. 2024-4

[10]
Identification of Enhanced Vaccine Mimotopes for the p15E Murine Cancer Antigen.

Cancer Res Commun. 2024-4-2

本文引用的文献

[1]
Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier.

Cancer Cell Int. 2022-1-3

[2]
Costimulation of γδTCR and TLR7/8 promotes Vδ2 T-cell antitumor activity by modulating mTOR pathway and APC function.

J Immunother Cancer. 2021-12

[3]
Deep learning model enables the discovery of a novel immunotherapeutic agent regulating the kynurenine pathway.

Oncoimmunology. 2021

[4]
High endothelial venule is a surrogate biomarker for T-cell inflamed tumor microenvironment and prognosis in gastric cancer.

J Immunother Cancer. 2021-10

[5]
Intratumoral combination therapy with poly(I:C) and resiquimod synergistically triggers tumor-associated macrophages for effective systemic antitumoral immunity.

J Immunother Cancer. 2021-9

[6]
Engineering a High-Affinity PD-1 Peptide for Optimized Immune Cell-Mediated Tumor Therapy.

Cancer Res Treat. 2022-4

[7]
MyD88-dependent BCG immunotherapy reduces tumor and regulates tumor microenvironment in bladder cancer murine model.

Sci Rep. 2021-8-2

[8]
Synergistic Immunostimulation through the Dual Activation of Toll-like Receptor 3/9 with Spherical Nucleic Acids.

ACS Nano. 2021-8-24

[9]
Real-World Efficacy Data and Predictive Clinical Parameters for Treatment Outcomes in Advanced Esophageal Squamous Cell Carcinoma Treated with Immune Checkpoint Inhibitors.

Cancer Res Treat. 2022-4

[10]
STING activation normalizes the intraperitoneal vascular-immune microenvironment and suppresses peritoneal carcinomatosis of colon cancer.

J Immunother Cancer. 2021-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索