Bouwens T, Bakker T M A, Zhu K, Hasenack J, Dieperink M, Brouwer A M, Huijser A, Mathew S, Reek J N H
van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands.
PhotoCatalytic Synthesis Group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, the Netherlands.
Nat Chem. 2023 Feb;15(2):213-221. doi: 10.1038/s41557-022-01068-y. Epub 2022 Oct 27.
Molecular photoelectrochemical devices are hampered by electron-hole recombination after photoinduced electron transfer, causing losses in power conversion efficiency. Inspired by natural photosynthesis, we demonstrate the use of supramolecular machinery as a strategy to inhibit recombination through an organization of molecular components that enables unbinding of the final electron acceptor upon reduction. We show that preorganization of a macrocyclic electron acceptor to a dye yields a pseudorotaxane that undergoes a fast (completed within ~50 ps) 'ring-launching' event upon electron transfer from the dye to the macrocycle, releasing the anionic macrocycle and thus reducing charge recombination. Implementing this system into p-type dye-sensitized solar cells yielded a 16-fold and 5-fold increase in power conversion efficiency compared to devices based on the two control dyes that are unable to facilitate pseudorotaxane formation. The active repulsion of the anionic macrocycle with concomitant reformation of a neutral pseudorotaxane complex circumvents recombination at both the semiconductor-electrolyte and semiconductor-dye interfaces, enabling a threefold enhancement in hole lifetime.
分子光电化学器件受到光致电子转移后电子-空穴复合的阻碍,导致功率转换效率损失。受自然光合作用的启发,我们展示了使用超分子机制作为一种策略,通过组织分子组件来抑制复合,这种组织能够在还原时使最终电子受体解离。我们表明,大环电子受体与染料的预组织产生了一种准轮烷,当电子从染料转移到大环时,该准轮烷会经历一个快速(在约50皮秒内完成)的“环发射”事件,释放出阴离子大环,从而减少电荷复合。将该系统应用于p型染料敏化太阳能电池,与基于两种无法促进准轮烷形成的对照染料的器件相比,功率转换效率提高了16倍和5倍。阴离子大环的主动排斥以及中性准轮烷复合物的伴随重新形成避免了在半导体-电解质和半导体-染料界面处的复合,使空穴寿命提高了三倍。