Yu Xin, Tang Yucheng, Yang Qi, Lee Ho Hin, Bao Shunxing, Moore Ann Zenobia, Ferrucci Luigi, Landman Bennett A
Computer Science, Vanderbilt University, Nashville, TN.
Electrical and Computer Engineering, Vanderbilt University, Nashville, TN.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2611595. Epub 2022 Apr 4.
Abdominal computed tomography CT imaging enables assessment of body habitus and organ health. Quantification of these health factors necessitates semantic segmentation of key structures. Deep learning efforts have shown remarkable success in automating segmentation of abdominal CT, but these methods largely rely on 3D volumes. Current approaches are not applicable when single slice imaging is used to minimize radiation dose. For 2D abdominal organ segmentation, lack of 3D context and variety in acquired image levels are major challenges. Deep learning approaches for 2D abdominal organ segmentation benefit by adding more images with manual annotation, but annotation is resource intensive to acquire given the large quantity and the requirement of expertise. Herein, we designed a gradient based active learning annotation framework by meta-parameterizing and optimizing the exemplars to dynamically select the 'hard cases' to achieve better results with fewer annotated slices to reduce the annotation effort. With the Baltimore Longitudinal Study on Aging (BLSA) cohort, we evaluated the performance with starting from 286 subjects and added 50 more subjects iteratively to 586 subjects in total. We compared the amount of data required to add to achieve the same Dice score between using our proposed method and the random selection in terms of Dice. When achieving 0.97 of the maximum Dice, the random selection needed 4.4 times more data compared with our active learning framework. The proposed framework maximizes the efficacy of manual efforts and accelerates learning.
腹部计算机断层扫描(CT)成像能够评估身体形态和器官健康状况。对这些健康因素进行量化需要对关键结构进行语义分割。深度学习在腹部CT分割自动化方面已取得显著成功,但这些方法很大程度上依赖于三维体积数据。当使用单层成像以尽量减少辐射剂量时,当前方法并不适用。对于二维腹部器官分割而言,缺乏三维上下文信息以及所获取图像层面的多样性是主要挑战。用于二维腹部器官分割的深度学习方法通过添加更多带有手动标注的图像而受益,但鉴于数量庞大且需要专业知识,获取标注资源密集。在此,我们通过对样本进行元参数化和优化,设计了一种基于梯度的主动学习标注框架,以动态选择“难例”,从而用更少的标注切片获得更好的结果,减少标注工作量。在巴尔的摩纵向衰老研究(BLSA)队列中,我们从286名受试者开始评估性能,并迭代地增加50名受试者,直至总共586名受试者。我们比较了使用我们提出的方法和随机选择方法在达到相同的骰子系数(Dice)分数时所需添加的数据量。当达到最大骰子系数的0.97时,随机选择所需的数据量是我们的主动学习框架的4.4倍。所提出的框架使人工标注的效率最大化并加速学习。