Suppr超能文献

RAP-NET:基于单随机解剖先验的从粗到细的多器官分割

RAP-NET: COARSE-TO-FINE MULTI-ORGAN SEGMENTATION WITH SINGLE RANDOM ANATOMICAL PRIOR.

作者信息

Lee Ho Hin, Tang Yucheng, Bao Shunxing, Abramson Richard G, Huo Yuankai, Landman Bennett A

机构信息

Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN USA.

Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:1491-1494. doi: 10.1109/ISBI48211.2021.9433975. Epub 2021 May 25.

Abstract

Performing coarse-to-fine abdominal multi-organ segmentation facilitates extraction of high-resolution segmentation minimizing the loss of spatial contextual information. However, current coarse-to-refine approaches require a significant number of models to perform single organ segmentation. We propose a coarse-to-fine pipeline RAP-Net, which starts from the extraction of the global prior context of multiple organs from 3D volumes using a low-resolution coarse network, followed by a fine phase that uses a single refined model to segment all abdominal organs instead of multiple organ corresponding models. We combine the anatomical prior with corresponding extracted patches to preserve the anatomical locations and boundary information for performing high-resolution segmentation across all organs in a single model. To train and evaluate our method, a clinical research cohort consisting of 100 patient volumes with 13 organs well-annotated is used. We tested our algorithms with 4-fold cross-validation and computed the Dice score for evaluating the segmentation performance of the 13 organs. Our proposed method using single auto-context outperforms the state-of-the-art on 13 models with an average Dice score 84.58% versus 81.69% (p<0.0001).

摘要

执行从粗到细的腹部多器官分割有助于提取高分辨率分割结果,同时将空间上下文信息的损失降至最低。然而,当前从粗到精的方法需要大量模型来执行单器官分割。我们提出了一种从粗到细的管道式RAP-Net,它首先使用低分辨率粗网络从3D体积中提取多个器官的全局先验上下文,随后进入精细阶段,该阶段使用单个细化模型来分割所有腹部器官,而不是多个器官对应的模型。我们将解剖学先验与相应提取的补丁相结合,以保留解剖位置和边界信息,从而在单个模型中对所有器官进行高分辨率分割。为了训练和评估我们的方法,我们使用了一个临床研究队列,该队列由100个患者体积组成,其中13个器官标注良好。我们使用4折交叉验证测试了我们的算法,并计算了Dice分数以评估13个器官的分割性能。我们提出的使用单个自动上下文的方法在13个模型上优于现有技术,平均Dice分数为84.58%,而现有技术为81.69%(p<0.0001)。

相似文献

1
RAP-NET: COARSE-TO-FINE MULTI-ORGAN SEGMENTATION WITH SINGLE RANDOM ANATOMICAL PRIOR.RAP-NET:基于单随机解剖先验的从粗到细的多器官分割
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:1491-1494. doi: 10.1109/ISBI48211.2021.9433975. Epub 2021 May 25.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验