Suppr超能文献

复杂蛋白质中功能中心的计算识别:带示例的分步指南

Computational Identification of Functional Centers in Complex Proteins: A Step-by-Step Guide With Examples.

作者信息

Zhou Wei, Chi Wei, Shen Wanting, Dou Wanying, Wang Junyi, Tian Xuechen, Gehring Christoph, Wong Aloysius

机构信息

Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China.

Department of Computer Science, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China.

出版信息

Front Bioinform. 2021 Mar 25;1:652286. doi: 10.3389/fbinf.2021.652286. eCollection 2021.

Abstract

In proteins, functional centers consist of the key amino acids required to perform molecular functions such as catalysis, ligand-binding, hormone- and gas-sensing. These centers are often embedded within complex multi-domain proteins and can perform important cellular signaling functions that enable fine-tuning of temporal and spatial regulation of signaling molecules and networks. To discover hidden functional centers, we have developed a protocol that consists of the following sequential steps. The first is the assembly of a search motif based on the key amino acids in the functional center followed by querying proteomes of interest with the assembled motif. The second consists of a structural assessment of proteins that harbor the motif. This approach, that relies on the application of computational tools for the analysis of data in public repositories and the biological interpretation of the search results, has to-date uncovered several novel functional centers in complex proteins. Here, we use recent examples to describe a step-by-step guide that details the workflow of this approach and supplement with notes, recommendations and cautions to make this protocol robust and widely applicable for the discovery of hidden functional centers.

摘要

在蛋白质中,功能中心由执行诸如催化、配体结合、激素和气体传感等分子功能所需的关键氨基酸组成。这些中心通常嵌入复杂的多结构域蛋白质中,并可执行重要的细胞信号传导功能,从而实现对信号分子和网络的时空调节进行微调。为了发现隐藏的功能中心,我们开发了一种包含以下连续步骤的方案。第一步是根据功能中心的关键氨基酸组装搜索基序,然后用组装好的基序查询感兴趣的蛋白质组。第二步是对含有该基序的蛋白质进行结构评估。这种方法依赖于应用计算工具来分析公共数据库中的数据以及对搜索结果进行生物学解释,迄今为止已在复杂蛋白质中发现了几个新的功能中心。在这里,我们用最近的例子描述一个逐步指南,详细说明这种方法的工作流程,并补充注释、建议和注意事项,以使该方案稳健且广泛适用于发现隐藏的功能中心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b871/9581015/06ab70bb7c46/fbinf-01-652286-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验