Suppr超能文献

确定用于脑机接口应用中功能近红外光谱信号LDA分类的最优特征组合。

Determining Optimal Feature-Combination for LDA Classification of Functional Near-Infrared Spectroscopy Signals in Brain-Computer Interface Application.

作者信息

Naseer Noman, Noori Farzan M, Qureshi Nauman K, Hong Keum-Shik

机构信息

Department of Mechatronics Engineering, Air University Islamabad, Pakistan.

Department of Cogno-Mechatronics, School of Mechanical Engineering, Pusan National University Busan, Korea.

出版信息

Front Hum Neurosci. 2016 May 25;10:237. doi: 10.3389/fnhum.2016.00237. eCollection 2016.

Abstract

In this study, we determine the optimal feature-combination for classification of functional near-infrared spectroscopy (fNIRS) signals with the best accuracies for development of a two-class brain-computer interface (BCI). Using a multi-channel continuous-wave imaging system, mental arithmetic signals are acquired from the prefrontal cortex of seven healthy subjects. After removing physiological noises, six oxygenated and deoxygenated hemoglobin (HbO and HbR) features-mean, slope, variance, peak, skewness and kurtosis-are calculated. All possible 2- and 3-feature combinations of the calculated features are then used to classify mental arithmetic vs. rest using linear discriminant analysis (LDA). It is found that the combinations containing mean and peak values yielded significantly higher (p < 0.05) classification accuracies for both HbO and HbR than did all of the other combinations, across all of the subjects. These results demonstrate the feasibility of achieving high classification accuracies using mean and peak values of HbO and HbR as features for classification of mental arithmetic vs. rest for a two-class BCI.

摘要

在本研究中,我们确定了用于两类脑机接口(BCI)开发的、具有最佳准确率的功能性近红外光谱(fNIRS)信号分类的最优特征组合。使用多通道连续波成像系统,从7名健康受试者的前额叶皮层采集心算信号。去除生理噪声后,计算六种氧合血红蛋白和脱氧血红蛋白(HbO和HbR)特征——均值、斜率、方差、峰值、偏度和峰度。然后,使用线性判别分析(LDA),将计算出的特征的所有可能的二特征和三特征组合用于心算与静息状态的分类。结果发现,对于所有受试者,包含均值和峰值的组合在HbO和HbR方面产生的分类准确率均显著高于(p < 0.05)所有其他组合。这些结果证明了将HbO和HbR的均值和峰值用作两类BCI心算与静息状态分类特征来实现高分类准确率的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b73/4879140/bc488b0c3560/fnhum-10-00237-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验