Suppr超能文献

FYU-Net:一种用于肾脏肿瘤医学成像的级联分割网络。

FYU-Net: A Cascading Segmentation Network for Kidney Tumor Medical Imaging.

机构信息

College of Information and Electrical Engineering, The China Agricultural University, Beijing 100083, China.

出版信息

Comput Math Methods Med. 2022 Oct 18;2022:4792532. doi: 10.1155/2022/4792532. eCollection 2022.

Abstract

Automated segmentation of renal tumors is essential for the diagnostic evaluation of kidney cancer. However, renal tumor volume is generally small compared with the volume of the kidney and is irregularly distributed; moreover, the location and shape of renal tumors are highly variable, making the segmentation task extremely challenging. To solve the aforementioned problems, a cascaded segmentation model (FYU-Net) for computed tomography (CT) images is proposed in this paper to achieve automatic kidney tumor segmentation. The proposed model involves two main steps. In the first step, a fast scan of the kidney CT data is performed using a localization network to find slices containing tumors, and coarse segmentation is performed simultaneously. In the second step, a segmentation framework embedded with the feature pyramid network module is employed to finely segment kidney tumors. By building a feature pyramid structure, targets of different sizes are distributed to be detected on different feature layers to extract richer feature information. In addition, the top-down structure allows the information of the higher-level feature maps to be transferred to the lower-level feature maps, enhancing the semantic information of the lower-level feature maps. Comparative experiments were conducted on the Kidney PArsing Challenge 2022 public dataset; the average Jaccard coefficient and average Dice coefficient of tumor structure segmentation were more than 70.73% and more than 82.85%, respectively. The results demonstrate the effectiveness of the proposed model for kidney tumor segmentation.

摘要

肾脏肿瘤的自动分割对于肾癌的诊断评估至关重要。然而,与肾脏体积相比,肾脏肿瘤的体积通常较小,且分布不规则;此外,肾脏肿瘤的位置和形状高度可变,使得分割任务极具挑战性。为了解决上述问题,本文提出了一种用于 CT 图像的级联分割模型(FYU-Net),以实现自动肾脏肿瘤分割。所提出的模型涉及两个主要步骤。在第一步中,使用定位网络快速扫描肾脏 CT 数据,以找到包含肿瘤的切片,并同时进行粗分割。在第二步中,采用嵌入特征金字塔网络模块的分割框架对肾脏肿瘤进行精细分割。通过构建特征金字塔结构,将不同大小的目标分配到不同的特征层进行检测,以提取更丰富的特征信息。此外,自顶向下的结构允许将高层特征图的信息传递到低层特征图,从而增强低层特征图的语义信息。在 Kidney PArsing Challenge 2022 公共数据集上进行了对比实验,肿瘤结构分割的平均 Jaccard 系数和平均 Dice 系数均超过 70.73%和 82.85%。实验结果表明,该模型在肾脏肿瘤分割方面具有较好的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8da/9596253/cc5d92d8ea9f/CMMM2022-4792532.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验