Suppr超能文献

使用入院指标建立新生儿光疗结局预测模型并进行验证。

The development and validation of a predictive model for neonatal phototherapy outcome using admission indicators.

作者信息

Liu Qin, Tang Zaixiang, Li Huijun, Li Yongfu, Tian Qiuyan, Yang Zuming, Miao Po, Yang Xiaofeng, Li Mei, Xu Lixiao, Feng Xing, Ding Xin

机构信息

Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, China.

Department of Neonatology, Suzhou Science / Technology Town Hospital, Suzhou, China.

出版信息

Front Pediatr. 2022 Oct 11;10:745423. doi: 10.3389/fped.2022.745423. eCollection 2022.

Abstract

Delayed exchange transfusion therapy (ETT) after phototherapy failure for newborns with severe hyperbilirubinemia could lead to serious complications such as bilirubin encephalopathy (BE). In this current manuscript we developed and validated a model using admission data for early prediction of phototherapy failure. We retrospectively examined the medical records of 292 newborns with severe hyperbilirubinemia as the training cohort and another 52 neonates as the validation cohort. Logistic regression modeling was employed to create a predictive model with seven significant admission indicators, i.e., age, past medical history, presence of hemolysis, hemoglobin, neutrophil proportion, albumin (ALB), and total serum bilirubin (TSB). To validate the model, two other models with conventional indicators were created, one incorporating the admission indicators and phototherapy failure outcome and the other using TSB decrease after phototherapy failure as a variable and phototherapy outcome as an outcome indicator. The area under the curve (AUC) of the predictive model was 0.958 [95% confidence interval (CI): 0.924-0.993] and 0.961 (95% CI: 0.914-1.000) in the training and validation cohorts, respectively. Compared with the conventional models, the new model had better predictive power and greater value for clinical decision-making by providing a possibly earlier and more accurate prediction of phototherapy failure. More rapid clinical decision-making and interventions may potentially minimize occurrence of serious complications of severe neonatal hyperbilirubinemia.

摘要

对于患有严重高胆红素血症的新生儿,光疗失败后延迟换血疗法(ETT)可能会导致胆红素脑病(BE)等严重并发症。在本论文中,我们开发并验证了一个使用入院数据来早期预测光疗失败的模型。我们回顾性检查了292例患有严重高胆红素血症的新生儿的病历作为训练队列,另外52例新生儿作为验证队列。采用逻辑回归建模创建了一个具有七个显著入院指标的预测模型,即年龄、既往病史、溶血情况、血红蛋白、中性粒细胞比例、白蛋白(ALB)和总血清胆红素(TSB)。为了验证该模型,创建了另外两个具有传统指标的模型,一个纳入入院指标和光疗失败结果,另一个将光疗失败后TSB的下降作为变量,光疗结果作为结果指标。预测模型在训练队列和验证队列中的曲线下面积(AUC)分别为0.958 [95%置信区间(CI):0.924 - 0.993]和0.961(95% CI:0.914 - 1.000)。与传统模型相比,新模型具有更好的预测能力,通过对光疗失败提供可能更早、更准确的预测,对临床决策具有更大的价值。更快速的临床决策和干预可能会潜在地减少严重新生儿高胆红素血症严重并发症的发生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d318/9592979/0235f0aab985/fped-10-745423-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验