Wilson Ander, Hsu Hsiao-Hsien Leon, Chiu Yueh-Hsiu Mathilda, Wright Robert O, Wright Rosalind J, Coull Brent A
Colorado State University.
Icahn School of Medicine at Mount Sinai.
Ann Appl Stat. 2022 Jun;16(2):1090-1110. doi: 10.1214/21-aoas1533. Epub 2022 Jun 13.
Exposures to environmental chemicals during gestation can alter health status later in life. Most studies of maternal exposure to chemicals during pregnancy have focused on a single chemical exposure observed at high temporal resolution. Recent research has turned to focus on exposure to mixtures of multiple chemicals, generally observed at a single time point. We consider statistical methods for analyzing data on chemical mixtures that are observed at a high temporal resolution. As motivation, we analyze the association between exposure to four ambient air pollutants observed weekly throughout gestation and birth weight in a Boston-area prospective birth cohort. To explore patterns in the data, we first apply methods for analyzing data on (1) a single chemical observed at high temporal resolution, and (2) a mixture measured at a single point in time. We highlight the shortcomings of these approaches for temporally-resolved data on exposure to chemical mixtures. Second, we propose a novel method, a Bayesian kernel machine regression distributed lag model (BKMR-DLM), that simultaneously accounts for nonlinear associations and interactions among time-varying measures of exposure to mixtures. BKMR-DLM uses a functional weight for each exposure that parameterizes the window of susceptibility corresponding to that exposure within a kernel machine framework that captures non-linear and interaction effects of the multivariate exposure on the outcome. In a simulation study, we show that the proposed method can better estimate the exposure-response function and, in high signal settings, can identify critical windows in time during which exposure has an increased association with the outcome. Applying the proposed method to the Boston birth cohort data, we find evidence of a negative association between organic carbon and birth weight and that nitrate modifies the organic carbon, elemental carbon, and sulfate exposure-response functions.
孕期暴露于环境化学物质会改变日后的健康状况。大多数关于孕期母亲接触化学物质的研究都集中在高时间分辨率下观察到的单一化学物质暴露上。最近的研究转向关注多种化学物质混合物的暴露,通常是在单一时间点进行观察。我们考虑用于分析高时间分辨率下观察到的化学物质混合物数据的统计方法。作为动机,我们分析了波士顿地区前瞻性出生队列中整个孕期每周观察到的四种环境空气污染物暴露与出生体重之间的关联。为了探索数据中的模式,我们首先应用方法来分析以下数据:(1) 在高时间分辨率下观察到的单一化学物质的数据,以及 (2) 在单个时间点测量的混合物的数据。我们强调了这些方法对于化学物质混合物暴露的时间分辨数据的缺点。其次,我们提出了一种新颖的方法,即贝叶斯核机器回归分布式滞后模型 (BKMR-DLM),该模型同时考虑了混合物暴露的时变测量之间的非线性关联和相互作用。BKMR-DLM 为每次暴露使用一个函数权重,该权重在核机器框架内参数化与该暴露对应的易感性窗口,该框架捕获了多变量暴露对结果的非线性和相互作用效应。在一项模拟研究中,我们表明所提出的方法可以更好地估计暴露-反应函数,并且在高信号设置下,可以识别出暴露与结果之间关联增加的关键时间窗口。将所提出的方法应用于波士顿出生队列数据,我们发现有机碳与出生体重之间存在负相关的证据,并且硝酸盐会改变有机碳、元素碳和硫酸盐的暴露-反应函数。