Suppr超能文献

环境暴露混合物:相关问题及应对方法

Environmental exposure mixtures: questions and methods to address them.

作者信息

Hamra Ghassan B, Buckley Jessie P

机构信息

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, MD, USA.

Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, MD, USA.

出版信息

Curr Epidemiol Rep. 2018 Jun;5(2):160-165. doi: 10.1007/s40471-018-0145-0. Epub 2018 Apr 5.

Abstract

PURPOSE OF THIS REVIEW

This review provides a summary of statistical approaches that researchers can use to study environmental exposure mixtures. Two primary considerations are the form of the research question and the statistical tools best suited to address that question. Because the choice of statistical tools is not rigid, we make recommendations about when each tool may be most useful.

RECENT FINDINGS

When dimensionality is relatively low, some statistical tools yield easily interpretable estimates of effect (e.g., risk ratio, odds ratio) or intervention impacts. When dimensionality increases, it is often necessary to compromise this interpretablity in favor of identifying interesting statistical signals from noise; this requires applying statistical tools that are oriented more heavily towards dimension reduction via shrinkage and/or variable selection.

SUMMARY

The study of complex exposure mixtures has prompted development of novel statistical methods. We suggest that further validation work would aid practicing researchers in choosing among existing and emerging statistical tools for studying exposure mixtures.

摘要

本综述的目的

本综述总结了研究人员可用于研究环境暴露混合物的统计方法。两个主要考虑因素是研究问题的形式以及最适合解决该问题的统计工具。由于统计工具的选择并非固定不变,我们针对每种工具在何时可能最有用给出建议。

最新发现

当维度相对较低时,一些统计工具能得出易于解释的效应估计值(如风险比、优势比)或干预影响。当维度增加时,往往需要在可解释性方面做出妥协,以利于从噪声中识别出有趣的统计信号;这就需要应用更侧重于通过收缩和/或变量选择来进行降维的统计工具。

总结

对复杂暴露混合物的研究促使了新统计方法的发展。我们建议进一步的验证工作将有助于实践研究人员在现有和新兴的用于研究暴露混合物的统计工具中进行选择。

相似文献

1
Environmental exposure mixtures: questions and methods to address them.
Curr Epidemiol Rep. 2018 Jun;5(2):160-165. doi: 10.1007/s40471-018-0145-0. Epub 2018 Apr 5.
4
Complex Mixtures, Complex Analyses: an Emphasis on Interpretable Results.
Curr Environ Health Rep. 2019 Jun;6(2):53-61. doi: 10.1007/s40572-019-00229-5.
6
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
7
Statistical methods for chemical mixtures: a roadmap for practitioners.
medRxiv. 2024 Mar 4:2024.03.03.24303677. doi: 10.1101/2024.03.03.24303677.
8
Statistical Approaches for Investigating Periods of Susceptibility in Children's Environmental Health Research.
Curr Environ Health Rep. 2019 Mar;6(1):1-7. doi: 10.1007/s40572-019-0224-5.
9
Approaches for incorporating environmental mixtures as mediators in mediation analysis.
Environ Int. 2019 Feb;123:368-374. doi: 10.1016/j.envint.2018.12.024. Epub 2018 Dec 17.
10
INTEGRATIVE STATISTICAL METHODS FOR EXPOSURE MIXTURES AND HEALTH.
Ann Appl Stat. 2020 Dec;14(4):1945-1963. doi: 10.1214/20-AOAS1364. Epub 2020 Dec 19.

引用本文的文献

3
LOW-RANK LONGITUDINAL FACTOR REGRESSION WITH APPLICATION TO CHEMICAL MIXTURES.
Ann Appl Stat. 2025 Mar;19(1):769-797. doi: 10.1214/24-aoas1988. Epub 2025 Mar 17.
4
Endocrine-Disrupting Chemicals and Persistent Nausea among Pregnant Women Enrolled in the Illinois Kids Development Study (I-KIDS).
Environ Health Perspect. 2025 May;133(5):57008. doi: 10.1289/EHP15547. Epub 2025 May 14.
5
Partial Effects in Environmental Mixtures: Evidence and Guidance on Methods and Implications.
Environ Health Perspect. 2025 May;133(5):57005. doi: 10.1289/EHP14942. Epub 2025 May 9.
6
A systematic review of air pollution exposure and brain structure and function during development.
Environ Res. 2025 Jun 15;275:121368. doi: 10.1016/j.envres.2025.121368. Epub 2025 Mar 10.
8
Exposome-wide association study of cognition among older adults in the National Health and Nutrition Examination Survey.
Exposome. 2025 Jan 28;5(1):osaf002. doi: 10.1093/exposome/osaf002. eCollection 2025.
9
Environmental Mixtures Analysis (E-MIX) Workflow and Methods Repository.
medRxiv. 2024 Dec 22:2024.12.20.24318087. doi: 10.1101/2024.12.20.24318087.

本文引用的文献

1
Stan: A Probabilistic Programming Language.
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
2
A Bayesian approach to the g-formula.
Stat Methods Med Res. 2018 Oct;27(10):3183-3204. doi: 10.1177/0962280217694665. Epub 2017 Mar 2.
3
Statistical Approaches to Address Multi-Pollutant Mixtures and Multiple Exposures: the State of the Science.
Curr Environ Health Rep. 2017 Dec;4(4):481-490. doi: 10.1007/s40572-017-0162-z.
4
6
COVARIATE-ADAPTIVE CLUSTERING OF EXPOSURES FOR AIR POLLUTION EPIDEMIOLOGY COHORTS.
Ann Appl Stat. 2017 Mar;11(1):93-113. doi: 10.1214/16-AOAS992. Epub 2017 Apr 8.
7
Extending the Distributed Lag Model framework to handle chemical mixtures.
Environ Res. 2017 Jul;156:253-264. doi: 10.1016/j.envres.2017.03.031. Epub 2017 Apr 3.
8
Lung Cancer Risk Associated with Regulated and Unregulated Chrysotile Asbestos Fibers.
Epidemiology. 2017 Mar;28(2):275-280. doi: 10.1097/EDE.0000000000000597.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验