Suppr超能文献

通过结构化贝叶斯回归树对估计围产期对环境混合物易感性的关键窗口。

Estimating perinatal critical windows of susceptibility to environmental mixtures via structured Bayesian regression tree pairs.

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

Department of Statistics, Colorado State University, Fort Collins, Colorado.

出版信息

Biometrics. 2023 Mar;79(1):449-461. doi: 10.1111/biom.13568. Epub 2021 Oct 12.

Abstract

Maternal exposure to environmental chemicals during pregnancy can alter birth and children's health outcomes. Research seeks to identify critical windows, time periods when exposures can change future health outcomes, and estimate the exposure-response relationship. Existing statistical approaches focus on estimation of the association between maternal exposure to a single environmental chemical observed at high temporal resolution (e.g., weekly throughout pregnancy) and children's health outcomes. Extending to multiple chemicals observed at high temporal resolution poses a dimensionality problem and statistical methods are lacking. We propose a regression tree-based model for mixtures of exposures observed at high temporal resolution. The proposed approach uses an additive ensemble of tree pairs that defines structured main effects and interactions between time-resolved predictors and performs variable selection to select out of the model predictors not correlated with the outcome. In simulation, we show that the tree-based approach performs better than existing methods for a single exposure and can accurately estimate critical windows in the exposure-response relation for mixtures. We apply our method to estimate the relationship between five exposures measured weekly throughout pregnancy and birth weight in a Denver, Colorado, birth cohort. We identified critical windows during which fine particulate matter, sulfur dioxide, and temperature are negatively associated with birth weight and an interaction between fine particulate matter and temperature. Software is made available in the R package dlmtree.

摘要

母体在怀孕期间暴露于环境化学物质会改变分娩和儿童的健康结果。研究旨在确定关键窗口期,即暴露可能改变未来健康结果的时间段,并估计暴露-反应关系。现有的统计方法侧重于估计母体在高时间分辨率(例如,整个怀孕期间每周)下暴露于单一环境化学物质与儿童健康结果之间的关联。扩展到观察到的高时间分辨率的多种化学物质会带来维数问题,并且缺乏统计方法。我们提出了一种基于回归树的高时间分辨率混合暴露模型。该方法使用树对的加性集合来定义时间分辨预测因子之间的结构主效应和相互作用,并执行变量选择以从与结果不相关的模型预测因子中选择。在模拟中,我们表明,对于单一暴露,基于树的方法比现有方法表现更好,并且可以准确估计混合物中暴露-反应关系的关键窗口。我们应用我们的方法来估计在科罗拉多州丹佛的一个出生队列中,每周整个怀孕期间测量的五种暴露与出生体重之间的关系。我们确定了关键窗口期,在此期间,细颗粒物、二氧化硫和温度与出生体重呈负相关,并且细颗粒物和温度之间存在相互作用。软件在 R 包 dlmtree 中提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验